Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 17(24): 2324-2333, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27685371

RESUMO

The transfer of photoenergized electrons from extracellular photosensitizers across a bacterial cell envelope to drive intracellular chemical transformations represents an attractive way to harness nature's catalytic machinery for solar-assisted chemical synthesis. In Shewanella oneidensis MR-1 (MR-1), trans-outer-membrane electron transfer is performed by the extracellular cytochromes MtrC and OmcA acting together with the outer-membrane-spanning porin⋅cytochrome complex (MtrAB). Here we demonstrate photoreduction of solutions of MtrC, OmcA, and the MtrCAB complex by soluble photosensitizers: namely, eosin Y, fluorescein, proflavine, flavin, and adenine dinucleotide, as well as by riboflavin and flavin mononucleotide, two compounds secreted by MR-1. We show photoreduction of MtrC and OmcA adsorbed on RuII -dye-sensitized TiO2 nanoparticles and that these protein-coated particles perform photocatalytic reduction of solutions of MtrC, OmcA, and MtrCAB. These findings provide a framework for informed development of strategies for using the outer-membrane-associated cytochromes of MR-1 for solar-driven microbial synthesis in natural and engineered bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Corantes/química , Grupo dos Citocromos c/metabolismo , Titânio/química , Catálise , Transporte de Elétrons , Amarelo de Eosina-(YS)/química , Compostos Férricos/química , Mononucleotídeo de Flavina/química , Luz , Nanopartículas Metálicas/química , Oxirredução , Fármacos Fotossensibilizantes/química , Shewanella
2.
Chem Sci ; 7(8): 5537-5546, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30034695

RESUMO

Capture and conversion of sunlight into the storable energy carrier H2 can be achieved through photoelectrochemical water splitting using light-absorbing cathodes and anodes bearing H2 and O2 evolving catalysts. Here, we report on the development of a dye-sensitised p-type nickel oxide (NiO) photocathode with a hexaphosphonated Ru(2,2'-bipyridine)3 based dye (RuP3) and a tetraphosphonated molecular [Ni(P2N2)2]2+ type proton reduction catalyst (NiP) for the photoreduction of aqueous protons to H2. A layer-by-layer deposition approach was employed, using Zr4+ ions to link the phosphonate units in RuP3 and NiP in a supramolecular assembly on the NiO photocathode. This approach keeps the dye in close proximity to the catalyst and semiconductor surface, but spatially separates NiP from NiO for advantageous electron transfer dynamics. The NiO|RuP3-Zr4+-NiP electrodes generate higher photocurrents and are more stable than photocathodes with RuP3 and NiP co-immobilised on the NiO surface in the absence of Zr4+ cations linking dye and catalyst. The generation of H2 with the NiO|RuP3-Zr4+-NiP hybrid electrode in pH 3 aqueous electrolyte solution during irradiation with a UV-filtered solar light simulator (λ > 400 nm, 100 mW cm-2, AM1.5G) has been confirmed by gas chromatography at an underpotential of 300 mV (Eappl = +0.3 V vs. RHE), demonstrating the potential of these electrodes to store solar energy in the chemical bond of H2.

3.
Chem Sci ; 7(7): 4024-4035, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155045

RESUMO

Splitting water into hydrogen and oxygen with molecular catalysts and light has been a long-established challenge. Approaches in homogeneous systems have been met with little success and the integration of molecular catalysts in photoelectrochemical cells is challenging due to inaccessibility and incompatibility of functional hybrid molecule/material electrodes with long-term stability in aqueous solution. Here, we present the first example of light-driven water splitting achieved with precious-metal-free molecular catalysts driving both oxygen and hydrogen evolution reactions. Mesoporous TiO2 was employed as a low-cost scaffold with long-term stability for anchoring a phosphonic acid-modified nickel(ii) bis-diphosphine catalyst (NiP) for electrocatalytic proton reduction. A turnover number of 600 mol H2 per mol NiP was achieved after 8 h controlled-potential electrolysis at a modest overpotential of 250 mV. X-ray photoelectron, UV-vis and IR spectroscopies confirmed that the molecular structure of the Ni catalyst remains intact after prolonged hydrogen production, thereby reasserting the suitability of molecular catalysts in the development of effective, hydrogen-evolving materials. The relatively mild operating conditions of a pH 3 aqueous solution allowed this molecule-catalysed cathode to be combined with a molecular Fe(ii) catalyst-modified WO3 photoanode in a photoelectrochemical cell. Water splitting into H2 and O2 was achieved under solar light illumination with an applied bias of >0.6 V, which is below the thermodynamic potential (1.23 V) for water splitting and therefore allowed the storage of solar energy in the fuel H2.

4.
Organometallics ; 34(15): 3820-3832, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26294806

RESUMO

The ortho-deprotonation of halide-substituted ferrocenes by treatment with lithium tetramethylpiperidide (LiTMP) has been investigated. Iodo-, bromo-, and chloro-substituted ferrocenes were easily deprotonated adjacent to the halide substituents. The synthetic applicability of this reaction was, however, limited by the fact that, depending on the temperature and the degree of halide substitution, scrambling of both iodo and bromo substituents at the ferrocene core took place. Iodoferrocenes could not be transformed selectively into ortho-substituted iodoferrocenes since, in the presence of LiTMP, the iodo substituents scrambled efficiently even at -78 °C, and this process had occurred before electrophiles had been added. Bromoferrocene and certain monobromo-substituted derivatives, however, could be efficiently ortho-deprotonated at low temperature and reacted with a number of electrophiles to afford 1,2- and 1,2,3-substituted ferrocene derivatives. For example, 2-bromo-1-iodoferrocene was synthesized by ortho-deprotonation of bromoferrocene and reaction with the electrophiles diiodoethane and diiodotetrafluoroethane, respectively. In this and related cases the iodide scrambling process and further product deprotonation due to the excess LiTMP could be suppressed efficiently by running the reaction at low temperature and in inverse mode. In contrast to the low-temperature process, at room temperature bromo substituents in bromoferrocenes scrambled in the presence of LiTMP. Chloro- and 1,2-dichloroferrocene could be ortho-deprotonated selectively, but in neither case was scrambling of a chloro substituent observed. As a further application of this ortho-deprotonation reaction, a route for the synthesis of 1,3-disubstituted ferrocenes was developed. 1,3-Diiodoferrocene was accessible from bromoferrocene in four steps. On a multigram scale an overall yield of 41% was achieved. 1,3-Diiodoferrocene was further transformed into symmetrically 1,3-disubstituted ferrocenes (1,3-R2Fc; R = CHO, COOEt, CN, CH=CH2).

5.
Adv Funct Mater ; 25(15): 2308-2315, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26180522

RESUMO

In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems.

6.
Chem Sci ; 6(8): 4855-4859, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717491

RESUMO

Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye (RuP) and a nickel bis(diphosphine) electrocatalyst (NiP) in an aqueous ascorbic acid solution. Our approach is based on transient absorption spectroscopy studies of the efficiency of photo-reduction of RuP and NiP correlated with pH-dependent photocatalytic H2 production and the degree of catalyst protonation. The influence of these factors results in an observed optimum photoactivity at pH 4.5 for the RuP-NiP system. The electron transfer from photo-reduced RuP to NiP is efficient and independent of the pH value of the medium. At pH <4.5, the efficiency of the system is limited by the yield of RuP photo-reduction by the sacrificial electron donor, ascorbic acid. At pH >4.5, the efficiency of the system is limited by the poor protonation of NiP, which inhibits its ability to reduce protons to hydrogen. We have therefore developed a rational strategy utilising transient absorption spectroscopy combined with bulk pH titration, electrocatalytic and photocatalytic experiments to disentangle the complex pH-dependent activity of the homogenous RuP-NiP photocatalytic system, which can be widely applied to other photocatalytic systems.

7.
Chem Commun (Camb) ; 50(100): 15995-8, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25407336

RESUMO

The electrocatalytic proton reduction activity of a Ni bis(diphosphine) (NiP) and a cobaloxime (CoP) catalyst has been studied in water in the presence of the gaseous inhibitors O2 and CO. CoP shows an appreciable tolerance towards O2, but its activity suffers severely in the presence of CO. In contrast, NiP is strongly inhibited by O2, but produces H2 under high CO concentrations.

8.
Angew Chem Int Ed Engl ; 53(43): 11538-42, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25205168

RESUMO

Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CN(x)), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50,000 mol H2(mol H2ase)(-1) and approximately 155 mol H2 (mol NiP)(-1) in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm).


Assuntos
Hidrogênio/química , Níquel/química , Nitrilas/química , Catálise , Fotoquímica
9.
Organometallics ; 33(8): 1945-1952, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24795493

RESUMO

Two representative Walphos analogues with an achiral 2,2″-biferrocenediyl backbone were synthesized. These diphosphine ligands were tested in the rhodium-catalyzed asymmetric hydrogenation of several alkenes and in the ruthenium-catalyzed hydrogenation of two ketones. The results were compared with those previously obtained on using biferrocene ligands with a C2-symmetric 2,2″-biferrocenediyl backbone as well as with those obtained with Walphos ligands. The application of one newly synthesized ligand in the hydrogenation of 2-methylcinnamic acid gave (R)-2-methyl-3-phenylpropanoic acid with full conversion and with 92% ee. The same ligand was used to transform 2,4-pentanedione quantitatively and diastereoselectively into (S,S)-2,4-pentanediol with 98% ee.

10.
Angew Chem Weinheim Bergstr Ger ; 126(43): 11722-11726, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26300567

RESUMO

Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CNx), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H2 (mol H2ase)-1 and approximately 155 mol H2 (mol NiP)-1 in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm).

11.
J Am Chem Soc ; 136(1): 356-66, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24320740

RESUMO

The generation of renewable H2 through an efficient photochemical route requires photoinduced electron transfer (ET) from a light harvester to an efficient electrocatalyst in water. Here, we report on a molecular H2 evolution catalyst (NiP) with a DuBois-type [Ni(P2(R')N2(R"))2](2+) core (P2(R')N2(R") = bis(1,5-R'-diphospha-3,7-R"-diazacyclooctane), which contains an outer coordination sphere with phosphonic acid groups. The latter functionality allows for good solubility in water and immobilization on metal oxide semiconductors. Electrochemical studies confirm that NiP is a highly active electrocatalyst in aqueous electrolyte solution (overpotential of approximately 200 mV at pH 4.5 with a Faradaic yield of 85 ± 4%). Photocatalytic experiments and investigations on the ET kinetics were carried out in combination with a phosphonated Ru(II) tris(bipyridine) dye (RuP) in homogeneous and heterogeneous environments. Time-resolved luminescence and transient absorption spectroscopy studies confirmed that directed ET from RuP to NiP occurs efficiently in all systems on the nano- to microsecond time scale, through three distinct routes: reductive quenching of RuP in solution or on the surface of ZrO2 ("on particle" system) or oxidative quenching of RuP when the compounds were immobilized on TiO2 ("through particle" system). Our studies show that NiP can be used in a purely aqueous solution and on a semiconductor surface with a high degree of versatility. A high TOF of 460 ± 60 h(-1) with a TON of 723 ± 171 for photocatalytic H2 generation with a molecular Ni catalyst in water and a photon-to-H2 quantum yield of approximately 10% were achieved for the homogeneous system.

12.
Organometallics ; 32(4): 1075-1084, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23457421

RESUMO

A total of four biferrocene-based Walphos-type ligands have been synthesized, structurally characterized, and tested in the rhodium-, ruthenium- and iridium-catalyzed hydrogenation of alkenes and ketones. Negishi coupling conditions allowed the biferrocene backbone of these diphosphine ligands to be built up diastereoselectively from the two nonidentical and nonracemic ferrocene fragments (R)-1-(N,N-dimethylamino)ethylferrocene and (SFc)-2-bromoiodoferrocene. The molecular structures of (SFc)-2-bromoiodoferrocene, the coupling product, two ligands, and the two complexes ([PdCl2(L)] and [RuCl(p-cymene)(L)]PF6) were determined by X-ray diffraction. The structural features of complexes and the catalysis results obtained with the newly synthesized biferrocene-based ligands were compared with those of the corresponding Walphos ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...