Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Genet ; 56(5): 737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750323
3.
Nat Genet ; 56(4): 557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622336
4.
Nano Lett ; 23(12): 5528-5534, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37278447

RESUMO

We report the first observation of the coupling of strong optical near fields to wavepackets of free, 100 eV electrons with <50 fs temporal resolution in an ultrafast point-projection microscope. Optical near fields are created by excitation of a thin, nanometer-sized Yagi-Uda antenna, with 20 fs near-infrared laser pulses. Phase matching between electrons and near fields is achieved due to strong spatial confinement of the antenna near field. Energy-resolved projection images of the antenna are recorded in an optical pump-electron probe scheme. We show that the phase modulation of the electron by transverse-field components results in a transient electron deflection while longitudinal near-field components broaden the kinetic energy distribution. This low-energy electron near-field coupling is used here to characterize the chirp of the ultrafast electron wavepackets, acquired upon propagation from the electron emitter to the sample. Our results bring direct mapping of different vectorial components of highly localized optical near fields into reach.

5.
Light Sci Appl ; 7: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839605

RESUMO

Observing the motion of electrons on their natural nanometer length and femtosecond time scales is a fundamental goal of and an open challenge for contemporary ultrafast science1-5. At present, optical techniques and electron microscopy mostly provide either ultrahigh temporal or spatial resolution, and microscopy techniques with combined space-time resolution require further development6-11. In this study, we create an ultrafast electron source via plasmon nanofocusing on a sharp gold taper and implement this source in an ultrafast point-projection electron microscope. This source is used in an optical pump-electron probe experiment to study ultrafast photoemissions from a nanometer-sized plasmonic antenna12-15. We probe the real space motion of the photoemitted electrons with a 20-nm spatial resolution and a 25-fs time resolution and reveal the deflection of probe electrons by residual holes in the metal. This is a step toward time-resolved microscopy of electronic motion in nanostructures.

6.
Opt Express ; 25(13): 15504-15525, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788974

RESUMO

We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.

7.
Chemphyschem ; 18(10): 1407-1414, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28334489

RESUMO

A family of ErIII and ErIII -YbIII based nanophosphors, hosted in monophasic oxidic CeIV -GdIII binary solid solutions, was prepared. The samples were formulated with a constant ErIII content as the activator, with the eventual addition of YbIII as a sensitizer. The amorphous Ce0.94-x Gdx Er0.06 (OH)CO3 ⋅H2 O and Ce0.94-x Gdx Er0.05 Yb0.01 (OH)CO3 ⋅H2 O precursors were prepared by following the urea method to obtain monodispersed spheres of tunable size ranging from 30 to 450 nm. After being decomposed at 1273 K under an atmosphere of air, the precursors of 200 nm in diameter evolved into monophasic polycrystalline particles preserving the parent shape and size. The role of the composition of the binary matrices in the emission properties was evaluated for two different excitation wavelengths (976 nm and 780 nm) based on the upconversion (UC) emission spectra and their dependence on the incident power. The yield of the UC process is discussed in the framework of established and novel alternative mechanisms. The number of vacancies and mainly the symmetry of the ErIII environment play major roles in the deactivation pathways of the UC emission mechanisms. However, the colours obtained by employing bare CeIV or GdIII hosts are preserved in the related monophasic CeIV -rich or GdIII -rich binary hosts.

8.
Light Sci Appl ; 6(10): e17075, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167207

RESUMO

We report long-lived, highly spatially localized plasmon states on the surface of nanoporous gold nanoparticles-nanosponges-with high excitation efficiency. It is well known that disorder on the nanometer scale, particularly in two-dimensional systems, can lead to plasmon localization and large field enhancements, which can, in turn, be used to enhance nonlinear optical effects and to study and exploit quantum optical processes. Here, we introduce promising, three-dimensional model systems for light capture and plasmon localization as gold nanosponges that are formed by the dewetting of gold/silver bilayers and dealloying. We study light-induced electron emission from single nanosponges, a nonlinear process with exponents of n≈5...7, using ultrashort laser pulse excitation to achieve femtosecond time resolution. The long-lived electron emission process proves, in combination with optical extinction measurements and finite-difference time-domain calculations, the existence of localized modes with lifetimes of more than 20 fs. These electrons couple efficiently to the dipole antenna mode of each individual nanosponge, which in turn couples to the far-field. Thus, individual gold nanosponges are cheap and robust disordered nanoantennas with strong local resonances, and an ensemble of nanosponges constitutes a meta material with a strong polarization independent, nonlinear response over a wide frequency range.

9.
ACS Nano ; 10(1): 475-83, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26635078

RESUMO

We report a drastic increase of the damping time of plasmonic eigenmodes in resonant bull's eye (BE) nanoresonators to more than 35 fs. This is achieved by tailoring the groove depth of the resonator and by coupling the confined plasmonic field in the aperture to an extended resonator mode such that spatial coherence is preserved over distances of more than 10 µm. Experimentally, this is demonstrated by probing the plasmon dynamics at the field level using broadband spectral interferometry. The nanoresonator allows us to efficiently concentrate the incident field inside the central aperture of the BE and to tailor its local optical nonlinearity by varying the aperture geometry. By replacing the central circular hole with an annular ring structure, we obtain 50-times higher second harmonic generation efficiency, allowing us to demonstrate the efficient concentration of long-lived plasmonic modes inside nanoapertures by interferometric frequency-resolved autocorrelation. Such a light concentration in a nanoresonator with high quality factor has high potential for sensing and coherent control of light-matter interactions on the nanoscale.

10.
Nano Lett ; 15(7): 4685-91, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26061633

RESUMO

We report photoelectron emission from the apex of a sharp gold nanotaper illuminated via grating coupling at a distance of 50 µm from the emission site with few-cycle near-infrared laser pulses. We find a fifty-fold increase in electron yield over that for direct apex illumination. Spatial localization of the electron emission to a nanometer-sized region is demonstrated by point-projection microscopic imaging of a silver nanowire. Our results reveal negligible plasmon-induced electron emission from the taper shaft and thus efficient nanofocusing of few-cycle plasmon wavepackets. This novel, remotely driven emission scheme offers a particularly compact source of ultrashort electron pulses of immediate interest for miniaturized electron microscopy and diffraction schemes with ultrahigh time resolution.

11.
Opt Express ; 22(21): 25295-306, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401563

RESUMO

The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 µm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.


Assuntos
Amplificadores Eletrônicos , Eletricidade , Fenômenos Ópticos , Elétrons , Interferometria , Cinética , Lasers , Fatores de Tempo
12.
Opt Express ; 21(22): 26564-77, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216878

RESUMO

We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

13.
Beilstein J Nanotechnol ; 4: 603-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205454

RESUMO

We investigate the radiation patterns of sharp conical gold tapers, which were designed as adiabatic nanofocusing probes for scanning near-field optical microscopy (SNOM). Field calculations show that only the lowest order eigenmode of such a taper can reach the very apex and thus induce the generation of strongly enhanced near-field signals. Higher-order modes are coupled into the far field at finite distances from the apex. Here, we demonstrate experimentally how to distinguish and separate between the lowest and higher-order eigenmodes of such a metallic taper by filtering in the spatial frequency domain. Our approach has the potential to considerably improve the signal-to-background ratio in spectroscopic experiments at the nanoscale.

14.
J Chem Phys ; 138(24): 244201, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23822236

RESUMO

We present in-line interferometric femtosecond stimulated Raman scattering (II-FSRS), a new method to measure the spectral Raman intensity and phase over a broad spectral range, potentially in a single shot. An analytic model is developed, that excellently reproduces the measured spectra. Additionally, the performance of II-FSRS is directly compared in experiments to two established techniques, namely femtosecond stimulated Raman scattering and femtosecond Raman induced Kerr-effect spectroscopy.


Assuntos
Análise Espectral Raman/métodos , Fatores de Tempo
15.
J Chem Phys ; 137(17): 174201, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23145724

RESUMO

We present a purely optical method for background suppression in nonlinear spectroscopy based on linear interferometry. Employing an unbalanced Sagnac interferometer, an unprecedented background reduction of 17 dB over a broad bandwidth of 60 THz (2000 cm(-1)) is achieved and its application to femtosecond stimulated Raman scattering loss spectroscopy is demonstrated. Apart from raising the signal-to-background ratio in the measurement of the Raman intensity spectrum, this interferometric method grants access to the spectral phase of the resonant χ(3) contribution. The spectral phase becomes apparent as a dispersive lineshape and is reproduced numerically with a simple oscillator model.

16.
Opt Express ; 19(16): 14763-78, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21934838

RESUMO

The impact of delayed optical feedback on the supercontinuum noise properties is investigated numerically and experimentally. The supercontinuum is generated by coupling femtosecond laser pulses into a microstructured fiber within a ring resonator, which introduces the optical feedback. The power noise and spectral amplitude noise properties of this feedback system are numerically and experimentally compared with single-pass supercontinuum generation. In a demonstrative experiment via optical feedback the power noise could be reduced by 15 dB and the spectral amplitude noise could be reduced by up to 28 dB.


Assuntos
Óptica e Fotônica , Desenho de Equipamento , Retroalimentação , Tecnologia de Fibra Óptica , Microscopia de Fluorescência/métodos , Distribuição Normal , Fibras Ópticas , Oscilometria
17.
Opt Express ; 18(24): 24611-8, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21164807

RESUMO

The manipulation of a supercontinuum via delayed optical feedback is investigated experimentally. The supercontinuum is generated in a microstructured fiber and a feedback ring resonator introduces the optical feedback and leads to the formation of different regimes of nonlinear dynamics. Via the feedback phase the optical spectrum and the regimes of nonlinear dynamics can be adjusted systematically. The impact of delay detuning on two different length scales, namely on a sub-wavelength scale and on a larger scale in the order of 10 µm are discussed. Additionally, the adjustment of the optical spectrum without changing the regime of nonlinear dynamics is demonstrated.

18.
Opt Express ; 18(20): 20667-72, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20940962

RESUMO

The delay and phase dependent behavior of a system for supercontinuum generation by using a microstructured fiber within a synchronously pumped ring resonator is presented numerically. The feedback introduced by the resonator led to an interaction of the supercontinuum with the following femtosecond laser pulses and thus to the formation of a nonlinear oscillator. Via the feedback phase different regimes of nonlinear dynamics, such as steady state, period multiplication, limit cycle and chaos can be adjusted systematically. The spectrum within one regime of nonlinear dynamics can additionally be modified independently from the regime of nonlinear dynamics.

19.
Opt Express ; 18(7): 7190-202, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389740

RESUMO

A system for supercontinuum generation by using a photonic crystal fiber within a synchronously pumped ring cavity is presented. The feedback led to an interaction of the generated supercontinuum with the following femtosecond laser pulses and thus to the formation of a nonlinear oscillator. The nonlinear dynamical behavior of this system was investigated experimentally and compared with numerical simulations. Steady state, period doubling and higher order multiplication of the repetition rate as well as limit cycle and chaotic behavior were observed in the supercontinuum generating system.


Assuntos
Óptica e Fotônica , Algoritmos , Biofísica/métodos , Simulação por Computador , Desenho de Equipamento , Lasers , Modelos Estatísticos , Modelos Teóricos , Dinâmica não Linear , Oscilometria/métodos , Espalhamento de Radiação , Análise Espectral Raman/métodos
20.
Opt Express ; 17(18): 15827-41, 2009 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-19724583

RESUMO

We numerically study the impact of feedback on supercontinuum generation within a microstructured fiber inside a ring resonator, synchronously pumped with femtosecond pulses. In certain parameter ranges we observe a steady-state oscillator-like operation mode of the system. Depending on pump power also period doubling up to chaos is shown by the system. Even with the inclusion of realistic pump noise as perturbation, the periodic behavior was still achievable in numerical modeling as well as in a first experimental verification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...