Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Otol Neurotol ; 42(1): e86-e93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044336

RESUMO

HYPOTHESIS: Intracochlear pressure measurements in one cochlear scala are sufficient as reference to determine the output of an active middle ear implant (AMEI) in terms of "equivalent sound pressure level" (eqSPL). BACKGROUND: The performance of AMEIs is commonly calculated from stapes velocities or intracochlear pressure differences (PDiff). However, there are scenarios where measuring stapes velocities or PDiff may not be feasible, for example when access to the stapes or one of the scalae is impractical. METHODS: We reanalyzed data from a previous study of our group that investigated the performance of an AMEI coupled to the incus in 10 human temporal bones. We calculated eqSPL based on stapes velocities according to the ASTM standard F2504-05 and based on intracochlear pressures in scala vestibuli, scala tympani, and PDiff. RESULTS: The AMEI produced eqSPL of ∼100 to 120 dB at 1 Vrms. No significant differences were found between using intracochlear pressures in scala vestibuli, scala tympani, or PDiff as a reference. The actuator performance calculated from stapes displacements predicted slightly higher eqSPLs at frequencies above 1000 Hz, but these differences were not statistically significant. CONCLUSION: Our findings show that pressure measurements in one scala can be sufficient to evaluate the performance of an AMEI coupled to the incus. The method may be extended to other stimulation modalities of the middle ear or cochlea when access to the stapes or one of the scalae is not possible.


Assuntos
Cóclea , Som , Orelha Média , Humanos , Rampa do Tímpano , Rampa do Vestíbulo
2.
Otol Neurotol ; 40(6): 789-796, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30994569

RESUMO

INTRODUCTION: The desired outcome of the implantation of active middle ear implants is maximum coupling efficiency and a minimum of conductive loss. It has not been investigated yet, which loading forces are applied during the process of coupling, which forces lead to an optimum actuator performance and which forces occur when manufacturer guidelines for coupling are followed. METHODS: Actuator output was measured by laser Doppler vibrometry of stapes motion while the actuator was advanced in 20 µm steps against the incus body while monitoring static contact force. The occurrence of conductive losses was investigated by measuring changes in stapes motion in response to acoustic stimulation for each step of actuator displacement. Additionally, the electrical impedance of the actuator was measured over the whole frequency range at each actuator position. RESULTS: Highest coupling efficiency was achieved at forces above 10 mN. Below 1 mN no efficient coupling could be achieved. At 30 mN loading force, which is typical when coupling according to manufacturer guidelines, conductive losses of more than 5 dB were observed in one out of nine TBs. The electrical impedance of the actuator showed a prominent resonance peak which vanished after coupling. CONCLUSION: A minimum coupling force of 10 mN is required for efficient coupling of the actuator to the incus. In most cases, coupling forces up to 100 mN will not result in clinically relevant conductive losses. The electrical impedance is a simple and reliable metric to indicate contact.


Assuntos
Condução Óssea/fisiologia , Orelha Média/fisiologia , Prótese Ossicular , Osso Temporal/fisiologia , Estimulação Acústica , Impedância Elétrica , Humanos , Bigorna/fisiologia , Estribo/fisiologia , Vibração
3.
Sci Rep ; 7(1): 15877, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158536

RESUMO

Today, the standard method to predict output levels of active middle ear implants (AMEIs) before clinical data are available is stapes vibration measurement in human cadaveric ears, according to ASTM standard F2504-05. Although this procedure is well established, the validity of the predicted output levels has never been demonstrated clinically. Furthermore, this procedure requires a mobile and visually accessible stapes and an AMEI stimulating the ossicular chain. Thus, an alternative method is needed to quantify the output level of AMEIs in all other stimulation modes, e.g. reverse stimulation of the round window. Intracochlear pressure difference (ICPD) is a good candidate for such a method as it correlates with evoked potentials in animals and it is measurable in cadaveric ears. To validate this method we correlated AMEI output levels calculated from ICPD and from stapes vibration in cadaveric ears with outputs levels determined from clinical data. Output levels calculated from ICPD were similar to output levels calculated from stapes vibration and almost identical to clinical data. Our results demonstrate that both ICPD and stapes vibration can be used as a measure to predict AMEI clinical output levels in cadaveric ears and that ICPD as reference provided even more accurate results.


Assuntos
Cóclea/fisiopatologia , Orelha Média/fisiopatologia , Prótese Ossicular , Janela da Cóclea/fisiologia , Estimulação Acústica , Animais , Cadáver , Potenciais Microfônicos da Cóclea/fisiologia , Humanos , Osso Temporal/fisiopatologia , Vibração
4.
Biomed Res Int ; 2016: 6059479, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610377

RESUMO

The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs) by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV) and scala tympani (ST) is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors) was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures.


Assuntos
Condução Óssea/fisiologia , Técnicas de Diagnóstico Otológico/instrumentação , Manometria/instrumentação , Espectrografia do Som/instrumentação , Osso Temporal/fisiologia , Transdutores de Pressão , Estimulação Acústica/instrumentação , Cadáver , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Otol Neurotol ; 37(7): 919-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27228016

RESUMO

BACKGROUND: The electromagnetic transducers of implantable middle ear hearing devices or direct acoustic cochlear implants (DACIs) are intended for implantation in an air-filled middle ear cavity. When implanted in an obliterated radical mastoid cavity, they would be surrounded by fatty tissue of unknown elastic properties, potentially attenuating the mechanical output. Here, the elastic properties of this tissue were determined experimentally and the vibrational output of commonly used electromagnetic transducers in an obliterated radical mastoid cavity was investigated in vitro using a newly developed method. METHODS: The Young's moduli of human fatty tissue samples (3-mm diameter), taken fresh from the abdomen or from the radical mastoid cavity during revision surgeries, were determined by indentation tests. Two phantom materials having Young's moduli similar to and higher than (worst case scenario) the tissue were identified. The displacement output of a DACI, a middle ear transducer (MET) and a floating mass transducer (FMT), was measured when embedded in the phantom materials in a model radical cavity and compared with the output of the nonembedded transducers. RESULTS: The here-determined Young's moduli of fresh human abdominal fatty tissue were comparable to the moduli of human breast fat tissue. When embedded in the phantom materials, the displacement output amplitude at 0.1 to 10 kHz of the DACI and MET was attenuated by maximally 5 dB. The attenuation of the output of the FMT was also minor at 0.5 to 10 kHz, but significantly reduced by up to 35 dB at lower frequencies. CONCLUSION: Using the method developed here, the Young's moduli of small soft tissue samples could be estimated and the effect of obliteration on the mechanical output of electromagnetic transducers was investigated in vitro. Our results demonstrate that the decrease in vibrational output of the DACI and MET in obliterated mastoid cavities is expected to be minor, having no major impact on clinical indication. Although no major attenuation of vibrational output of the FMT was found for frequencies >0.5 kHz, for implantations in patients the attenuation at frequencies <0.5 kHz may have to be taken into account.


Assuntos
Tecido Adiposo , Fenômenos Eletromagnéticos , Auxiliares de Audição , Modelos Biológicos , Implante Coclear/instrumentação , Implantes Cocleares , Orelha Média/cirurgia , Módulo de Elasticidade , Humanos , Técnicas In Vitro , Processo Mastoide/patologia , Processo Mastoide/cirurgia , Desenho de Prótese , Transdutores , Vibração
6.
PLoS One ; 10(3): e0119601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785860

RESUMO

This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia) in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW). Here the perilymph stimulation with a K-piston through a stapes footplate (SFP) fenestration (N = 10) as well as stimulation of the stapes head (SH) with a Bell prosthesis (N = 9), SFP stimulation with an Omega/Aerial prosthesis (N = 8) and reverse RW stimulation (N = 10) were performed in cadaveric human temporal bones (TBs). Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL) using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL), being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL) and RW stimulation (108.3-128.2 eq. dB SPL). Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.


Assuntos
Estimulação Acústica/instrumentação , Cóclea/fisiologia , Implante Coclear/instrumentação , Implantes Cocleares , Estimulação Acústica/métodos , Implante Coclear/métodos , Humanos , Desenho de Prótese , Janela da Cóclea/fisiologia , Osso Temporal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...