Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850136

RESUMO

The preparation of mock-ups in heritage science studies represents a valid alternative for investigation purposes, avoiding extensive sampling of cultural heritage objects. This work presents for the first time the successful preparation of three dimensional (3D) mock-ups made of celluloid, considering a combination of historical industrial production strategies and small-scale lab facilities. Prefabricated transparent celluloid sheets were acquired and then shaped through compression molding for creating mock-ups with 3D geometries. These reflected common and representative shapes encountered in the collection of the Deutsches Museum. Visual inspection of the mock-ups allowed determining the best compression molding conditions. Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) confirmed the absence of molecular heterogeneity due to the processing method. Artificial aging of the mock-ups was conducted to reach degradation states comparable with naturally aged objects. ATR-FTIR investigation offered first insights into the induced artificial degradation. Ion chromatography (IC) and gel permeation chromatography (GPC) analyses allowed to assess the extent of the artificial aging of the celluloid mock-ups and confirmed the occurrence of loss of camphor, denitration, and main chain polymer scission, the latter being the predominant decay path. The comparison with historical objects highlighted that the mock-ups are representative of moderately aged artifacts. As such, this study paves the way for implementing moderately aged celluloid 3D mock-ups in heritage science research, enabling in-depth testing for the scope of conservation.

2.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772419

RESUMO

Air-coupled ultrasound sensors have advantages over contact ultrasound sensors when a sample should not become contaminated or influenced by the couplant or the measurement has to be a fast and automated inline process. Thereby, air-coupled transducers must emit high-energy pulses due to the low air-to-solid power transmission ratios (10-3 to 10-8). Currently used resonant transducers trade bandwidth-a prerequisite for material parameter analysis-against pulse energy. Here we show that a combination of a non-resonant ultrasound emitter and a non-resonant detector enables the generation and detection of pulses that are both high in amplitude (130 dB) and bandwidth (2 µs pulse width). We further show an initial application: the detection of reflections inside of a carbon fiber reinforced plastic plate with thicknesses between 1.7 mm and 10 mm. As the sensors work contact-free, the time of flight and the period of the in-plate reflections are independent parameters. Hence, a variation of ultrasound velocity is distinguishable from a variation of plate thickness and both properties are determined simultaneously. The sensor combination is likely to find numerous industrial applications necessitating high automation capacity and opens possibilities for air-coupled, single-side ultrasonic inspection.

3.
Adv Mater ; 28(37): 8138-8143, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27391813

RESUMO

A mortar hybrid material is presented in which biomineralization processes are stimulated by adding a biological component, i.e., bacterial biofilm, to standard mortar. A material is obtained that exhibits increased roughness on the microscale and the nanoscale. Accordingly, the hybrid mortar not only resists wetting but also suppresses the uptake of water by capillary forces.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Bactérias , Biofilmes , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...