Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aerobiologia (Bologna) ; 33(3): 417-434, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30220779

RESUMO

Endotoxins are a component of Gram-negative bacteria cell walls and are known to be present in biosolids. Endotoxins have been shown to be potent stimulators of the innate immune response causing airway irritation and shortness of breath. Class B biosolids are routinely applied to agricultural lands to enhance soil properties and can be used as an alternative to chemical fertilizers. This study investigated the aerosolized endotoxin dispersed during the land application of Class B biosolids on agricultural land and a concrete surface at two sites in Colorado, USA. Aerosolized endotoxin was captured using HiVol samplers fitted with glass fiber filters, polycarbonate filter cassettes (both open and closed) and BioSampler impinger air samplers. Endotoxins were also measured in the biosolids to allow for correlating bulk biosolids concentrations with aerosol emission rates. Endotoxin concentrations in biosolids, impinger solutions and filter extracts were determined using the kinetic Limulus amebocyte lysate assay. Aerosolized endotoxin concentration was detected from all sites with levels ranging from 0.5 to 642 EU/m3. The four types of sampling apparatus were compared, and the HiVol and open-faced cassette samplers produced higher time-weighted average (TWA) measurements (EU/m3) than the impinger and closed cassette samplers. Ambient wind speed was found to be the variable best describing the observed results with optimal wind speed for highest deposition estimated at 5 m s-1. It is argued that HiVol air samplers are a particularly reliable approach and subsequent analyses relating TWA measurements to wind speed and biosolids characteristics were based on the measurements collected with those samplers.

2.
Appl Environ Microbiol ; 66(7): 2695-702, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10877757

RESUMO

The sorption of organic contaminants by natural organic matter (NOM) often limits substrate bioavailability and is an important factor affecting microbial degradation rates in soils and sediments. We hypothesized that reduced substrate bioavailability might influence which microbial assemblages are responsible for contaminant degradation under enrichment culture conditions. Our primary goal was to characterize enrichments in which different model organic solid phases were used to establish a range of phenanthrene bioavailabilities for soil microorganisms. Phenanthrene sorption coefficients (expressed as log K(D) values) ranged from 3.0 liters kg(-1) for Amberlite carboxylic acid cation-exchange resin (AMB) to 3.5 liters kg(-1) for Biobeads polyacrylic resin (SM7) and 4.2 liters kg(-1) for Biobeads divinyl benzene resin (SM2). Enrichment cultures were established for control (no sorptive phase), sand, AMB, SM7, and SM2 treatments by using two contaminated soils (from Dover, Ohio, and Libby, Mont.) as the initial inocula. The effects of sorption by model phases on the degradation of phenanthrene were evaluated for numerous transfers in order to obtain stable microbial assemblages representative of sorptive and nonsorptive enrichment cultures and to eliminate the effects of the NOM present in the initial inoculum. Phenanthrene degradation rates were similar for each soil inoculum and ranged from 4 to 5 micromol day(-1) for control and sand treatments to approximately 0.4 micromol day(-1) in the presence of the SM7 sorptive phase. The rates of phenanthrene degradation in the highly sorptive SM2 enrichment culture were insignificant; consequently, stable microbial populations could not be obtained. Bacterial isolates obtained from serial dilutions of enrichment culture samples exhibited significant differences in rates of phenanthrene degradation performed in the presence of SM7, suggesting that enrichments performed in the presence of a sorptive phase selected for different microbial assemblages than control treatments containing solid phase phenanthrene.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Fenantrenos/metabolismo , Microbiologia do Solo , Adsorção , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Disponibilidade Biológica , Meios de Cultura , Poluentes do Solo/metabolismo
3.
Appl Environ Microbiol ; 66(7): 2703-10, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10877758

RESUMO

Reduced bioavailability of nonpolar contaminants due to sorption to natural organic matter is an important factor controlling biodegradation of pollutants in the environment. We established enrichment cultures in which solid organic phases were used to reduce phenanthrene bioavailability to different degrees (R. J. Grosser, M. Friedrich, D. M. Ward, and W. P. Inskeep, Appl. Environ. Microbiol. 66:2695-2702, 2000). Bacteria enriched and isolated from contaminated soils under these conditions were analyzed by denaturing gradient gel electrophoresis (DGGE) and sequencing of PCR-amplified 16S ribosomal DNA segments. Compared to DGGE patterns obtained with enrichment cultures containing sand or no sorptive solid phase, different DGGE patterns were obtained with enrichment cultures containing phenanthrene sorbed to beads of Amberlite IRC-50 (AMB), a weak cation-exchange resin, and especially Biobead SM7 (SM7), a polyacrylic resin that sorbed phenanthrene more strongly. SM7 enrichments selected for mycobacterial phenanthrene mineralizers, whereas AMB enrichments selected for a Burkholderia sp. that degrades phenanthrene. Identical mycobacterial and Burkholderia 16S rRNA sequence segments were found in SM7 and AMB enrichment cultures inoculated with contaminated soil from two geographically distant sites. Other closely related Burkholderia sp. populations, some of which utilized phenanthrene, were detected in sand and control enrichment cultures. Our results are consistent with the hypothesis that different phenanthrene-utilizing bacteria inhabiting the same soils may be adapted to different phenanthrene bioavailabilities.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Fenantrenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Adsorção , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , Disponibilidade Biológica , Meios de Cultura , DNA Ribossômico/análise , DNA Ribossômico/genética , Eletroforese em Gel de Poliacrilamida/métodos , Genes de RNAr , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Can J Microbiol ; 46(3): 269-77, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10749540

RESUMO

The use of microorganisms for bioremediation of contaminated soils may be enhanced with an understanding of the pathways involved in their degradation of hazardous compounds. Ralstonia sp. strain RJGII.123 was isolated from soil located at a former coal gasification plant, based on its ability to mineralize carbazole, a three-ring N-heterocyclic pollutant. Experiments were carried out with strain RJGHII.123 and 14C-carbazole (2 mg/L and 500 mg/L) as the sole organic carbon source. At 15 days, 80% of the 2 mg/L carbazole was recovered as CO2, and <1% remained as undegraded carbazole, while 24% of the 500 mg/L carbazole was recovered as CO2 and approximately 70% remained as undegraded carbazole. Several stable intermediates were formed during this time. These intermediates were separated by high performance liquid chromatography (HPLC) and were characterized using high resolution mass spectroscopy (HR-MS) and gas chromatography - mass spectroscopy (GC-MS). At least 10 ring cleavage products of carbazole degradation were identified; four of these were confirmed as anthranilic acid, indole-2-carboxylic acid, indole-3-carboxylic acid, and (1H)-4-quinolinone by comparison with standards. These data indicate that strain RJGII.123 shares aspects of carbazole degradation with previously described Pseudomonas spp., and may be useful in facilitating the bioremediation of NHA from contaminated soils.


Assuntos
Betaproteobacteria/isolamento & purificação , Betaproteobacteria/metabolismo , Carbazóis/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Betaproteobacteria/genética , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , DNA Ribossômico/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Cíclicos/química , Hidrocarbonetos Cíclicos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
5.
Appl Environ Microbiol ; 57(12): 3462-9, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1785924

RESUMO

We studied the mineralization of pyrene, carbazole, and benzo[a]pyrene in soils obtained from three abandoned coal gasification plants in southern Illinois. The soils had different histories of past exposure to hydrocarbon contamination and different amounts of total organic carbon, microbial biomass, and microbial activity. Mineralization was measured by using serum bottle radiorespirometry. The levels of indigenous mineralization of 14C-labeled compounds ranged from 10 to 48% for pyrene, from undetectable to 46% for carbazole, and from undetectable to 25% for benzo[a]pyrene following long-term (greater than 180-day) incubations. Pyrene and carbazole were degraded with short or no lag periods in all soils, but benzo[a]pyrene mineralization occurred after a 28-day lag period. Mineralization was not dependent on high levels of microbial biomass and activity in the soils. Bacterial cultures that were capable of degrading pyrene and carbazole were isolated by enrichment, grown in pure culture, and reintroduced into soils. Reintroduction of a pyrene-degrading bacterium enhanced mineralization to a level of 55% within 2 days, compared with a level of 1% for the indigenous population. The carbazole degrader enhanced mineralization to a level of 45% after 7 days in a soil that showed little indigenous carbazole mineralization. The pyrene and carbazole degraders which we isolated were identified as a Mycobacterium sp. and a Xanthamonas sp., respectively. Our results indicated that mineralization of aromatic hydrocarbons can be significantly enhanced by reintroducing isolated polycyclic aromatic hydrocarbon-degrading bacteria.


Assuntos
Benzo(a)pireno/metabolismo , Carbazóis/metabolismo , Minerais/metabolismo , Pirenos/metabolismo , Microbiologia do Solo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Cinética , Mycobacterium/isolamento & purificação , Mycobacterium/metabolismo , Xanthomonas/isolamento & purificação , Xanthomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...