Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Chem Phys ; 153(21): 214112, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291899

RESUMO

We study in detail the first three leading terms of the large coupling-strength limit of the adiabatic connection that has as weak-interaction expansion the Møller-Plesset perturbation theory. We first focus on the H atom, both in the spin-polarized and the spin-unpolarized cases, reporting numerical and analytical results. In particular, we derive an asymptotic equation that turns out to have simple analytical solutions for certain channels. The asymptotic H atom solution for the spin-unpolarized case is then shown to be variationally optimal for the many-electron spin-restricted closed-shell case, providing expressions for the large coupling-strength density functionals up to the third leading order. We also analyze the H2 molecule and the uniform electron gas.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32759484

RESUMO

We re-adapt a spectral renormalization method, introduced in nonlinear optics, to solve the Kohn- Sham (KS) equations of density functional theory (DFT), with a focus on functionals based on the strictly-correlated electrons (SCE) regime, which are particularly challenging to converge. Important aspects of the method are: (i) the eigenvalues and the density are computed simultaneously; (ii) it converges using randomized initial guesses; (iii) easy to implement. Using this method we could converge for the first time the Kohn-Sham equations with functionals that include the next leading term in the strong-interaction limit of density functional theory, the so called zero-point energy (ZPE) functional as well as with an interaction-strength-interpolation (ISI) functional that includes both the exact SCE and ZPE terms. This work is the first building block for future studies on quantum systems confined in low dimensions with different statistics and long-range repulsions, such as localization properties of fermions and bosons with strong long-range repulsive interactions in the presence of a random external potential.

4.
J Chem Theory Comput ; 16(1): 488-498, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31855421

RESUMO

In this work, we study the entropic regularization of the strictly correlated electrons formalism, discussing the implications for density functional theory and establishing a link with earlier works on quantum kinetic energy and classical entropy. We carry out a very preliminary investigation (using simplified models) on the use of the solution of the entropic regularized problem to build approximations for the kinetic correlation functional at large coupling strengths. We also analyze lower and upper bounds to the Hohenberg-Kohn functional using the entropic regularized strictly correlated electrons problem.

5.
J Chem Theory Comput ; 13(12): 6089-6100, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29111724

RESUMO

Exact pieces of information on the adiabatic connection integrand, Wλ[ρ], which allows evaluation of the exchange-correlation energy of Kohn-Sham density functional theory, can be extracted from the leading terms in the strong coupling limit (λ → ∞, where λ is the strength of the electron-electron interaction). In this work, we first compare the theoretical prediction for the two leading terms in the strong coupling limit with data obtained via numerical implementation of the exact Levy functional in the simple case of two electrons confined in one dimension, confirming the asymptotic exactness of these two terms. We then carry out a first study on the incorporation of the Fermionic statistics at large coupling λ, both numerical and theoretical, confirming that spin effects enter at orders ∼e-√λ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...