Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(29): 12036-12045, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39081555

RESUMO

Forced wetting (intrusion) and spontaneous dewetting (extrusion) of hydrophobic/lyophobic nanoporous materials by water/nonwetting liquid are of great importance for a broad span of technological and natural systems such as shock-absorbers, molecular springs, separation, chromatography, ion channels, nanofluidics, and many more. In most of these cases, the process of intrusion-extrusion is not complete due to the stochastic nature of external stimuli under realistic operational conditions. However, understanding of these partial processes is limited, as most of the works are focused on an idealized complete intrusion-extrusion cycle. In this work, we show an experimental system operating under partial intrusion/extrusion conditions and present a simple model that captures its main features. We rationalize these operational conditions in terms of the pore entrance and cavity size distributions of the material, which control the range of intrusion/extrusion pressures.

2.
Nat Commun ; 15(1): 5076, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871721

RESUMO

Although coveted in applications, few materials expand when subject to compression or contract under decompression, i.e., exhibit negative compressibility. A key step to achieve such counterintuitive behaviour is the destabilisations of (meta)stable equilibria of the constituents. Here, we propose a simple strategy to obtain negative compressibility exploiting capillary forces both to precompress the elastic material and to release such precompression by a threshold phenomenon - the reversible formation of a bubble in a hydrophobic flexible cavity. We demonstrate that the solid part of such metastable elastocapillary systems displays negative compressibility across different scales: hydrophobic microporous materials, proteins, and millimetre-sized laminae. This concept is applicable to fields such as porous materials, biomolecules, sensors and may be easily extended to create unexpected material susceptibilities.

3.
J Am Chem Soc ; 146(19): 13236-13246, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701635

RESUMO

Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.

4.
ACS Appl Mater Interfaces ; 16(6): 7604-7616, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300737

RESUMO

The properties of nanoconfined fluids are important for a broad range of natural and engineering systems. In particular, wetting/dewetting of hydrophobic nanoporous materials is crucial due to their broad applicability for molecular separation and liquid purification; energy storage, conversion, recuperation, and dissipation; for catalysis, chromatography, and so on. In this work, a rapid, orchestrated, and spontaneous dipole reorientation was observed in hydrophobic nanotubes of various pore sizes d (7.9-16.5 Å) via simulations. This phenomenon leads to the fragmentation of water clusters in the narrow nanopores (d = 7.9, 10 Å) and strongly affects dewetting through cluster repulsion. The cavitation in these pores has an electrostatic origin. The dependence of hydrogen-bonded network properties on the tube aperture is obtained and is used to explain wetting (intrusion)-dewetting (extrusion) hysteresis. Computer simulations and experimental data demonstrate that d equals ca. 12.5 Å is a threshold between a nonhysteretic (spring) behavior, where intrusion-extrusion is reversible, and a hysteretic one (shock absorber), where hysteresis is prominent. This work suggests that water clustering and the electrostatic nature of cavitation are important factors that can be effectively exploited for controlling the wetting/dewetting of nanoporous materials.

5.
J Phys Chem Lett ; 15(4): 880-887, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241150

RESUMO

Heat and the work of compression/decompression are among the basic properties of thermodynamic systems. Being relevant to many industrial and natural processes, this thermomechanical energy is challenging to tune due to fundamental boundaries for simple fluids. Here via direct experimental and atomistic observations, we demonstrate, for fluids consisting of nanoporous material and a liquid, one can overcome these limitations and noticeably affect both thermal and mechanical energies of compression/decompression exploiting preferential intrusion of water from aqueous solutions into subnanometer pores. We hypothesize that this effect is due to the enthalpy of dilution manifesting itself as the aqueous solution concentrates upon the preferential intrusion of pure water into pores. We suggest this genuinely subnanoscale phenomenon can be potentially a strategy for controlling the thermomechanical energy of microporous liquids and tuning the wetting/dewetting heat of nanopores relevant to a variety of natural and technological processes spanning from biomedical applications to oil-extraction and renewable energy.

6.
ACS Appl Mater Interfaces ; 16(4): 5286-5293, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258752

RESUMO

Wetting of a solid by a liquid is relevant for a broad range of natural and technological processes. This process is complex and involves the generation of heat, which is still poorly understood especially in nanoconfined systems. In this article, scanning transitiometry was used to measure and evaluate the pressure-driven heat of intrusion of water into solid ZIF-8 powder within the temperature range of 278.15-343.15 K. The conditions examined included the presence and absence of atmospheric gases, basic pH conditions, solid sample origins, and temperature. Simultaneously with these experiments, molecular dynamics simulations were conducted to elucidate the changing behavior of water as it enters into ZIF-8. The results are rationalized within a temperature-dependent thermodynamic cycle. This cycle describes the temperature-dependent process of ZIF-8 filling, heating, emptying, and cooling with respect to the change of internal energy of the cycle from the calculated change in the specific heat capacity of the system. At 298 K the experimental heat of intrusion per gram of ZIF-8 was found to be -10.8 ± 0.8 J·g-1. It increased by 19.2 J·g-1 with rising temperature to 343 K which is in a reasonable match with molecular dynamic simulations that predicted 16.1 J·g-1 rise. From these combined experiments, the role of confined water in heat of intrusion of ZIF-8 is further clarified.

7.
Phys Chem Chem Phys ; 26(3): 2440-2448, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38167891

RESUMO

Zeolitic imidazolate framework (ZIF) microporous materials have already been employed in many fields of energetic and environmental interest since the last decade. The commercial scale production of some of these materials makes them more accessible for their implementation in industrial processes; however, their massive synthesis may entail modifications to the preparation protocols, which may result in a loss in the optimization of this process and a drop in the material's quality. This fact may have implications for the performance of these materials during their lifetime, especially when they are used in applications such as energy dissipation, in which they are subjected to several operating cycles under high pressures. This study focuses on ZIF-67, a material that has demonstrated in the past its ability to dissipate energy through the water intrusion-extrusion process under high pressure. Two ZIF-67 samples were synthesized using different protocols, and 2 batches of different qualities (labelled as high quality (HQ) and low quality (LQ)) were obtained and analysed by water porosimetry to study their performance in the intrusion-extrusion process. Unexpectedly, minor structural differences, which are typically neglected especially under production conditions, had a dramatic effect on their performance. The results presented in this study reiterate the importance of quality control with respect to reproducibility of experimental results. In a broader perspective, they are critical to the technology transfer from academia to industry.

8.
Nano Lett ; 23(23): 10682-10686, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38033298

RESUMO

Flexible nanoporous materials are of great interest for applications in many fields such as sensors, catalysis, material separation, and energy storage. Of these, metal-organic frameworks (MOFs) are the most explored thus far. However, tuning their flexibility for a particular application remains challenging. In this work, we explore the effect of the exogenous property of crystallite size on the flexibility of the ZIF-8 MOF. By subjecting hydrophobic ZIF-8 to hydrostatic compression with water, the flexibility of its empty framework and the giant negative compressibility it experiences during water intrusion were recorded via in operando synchrotron irradiation. It was observed that as the crystallite size is reduced to the nanoscale, both flexibility and the negative compressibility of the framework are reduced by ∼25% and ∼15%, respectively. These results pave the way for exogenous tuning of flexibility in MOFs without altering their chemistries.

9.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955326

RESUMO

Hydrophobicity has proven fundamental in an inexhaustible amount of everyday applications. Material hydrophobicity is determined by chemical composition and geometrical characteristics of its macroscopic surface. Surface roughness or texturing enhances intrinsic hydrophilic or hydrophobic characteristics of a material. Here we consider crystalline surfaces presenting molecular-scale texturing typical of crystalline porous materials, e.g., metal-organic frameworks. In particular, we investigate one such material with remarkable hydrophobic qualities, ZIF-8. We show that ZIF-8 hydrophobicity is driven not only by its chemical composition but also its sub-nanoscale surface corrugations, a physical enhancement rare amongst hydrophobes. Studying ZIF-8's hydrophobic properties is challenging as experimentally it is difficult to distinguish between the materials' and the macroscopic corrugations' contributions to the hydrophobicity. The computational contact angle determination is also difficult as the standard "geometric" technique of liquid nanodroplet deposition is prone to many artifacts. Here, we characterise ZIF-8 hydrophobicity via: (i) the "geometric" approach and (ii) the "energetic" method, utilising the Young-Dupré formula and computationally determining the liquid-solid adhesion energy. Both approaches reveal nanoscale Wenzel-like bathing of the corrugated surface. Moreover, we illustrate the importance of surface linker termination in ZIF-8 hydrophobicity, which reduces when varied from sp3 N to sp2 N termination. We also consider halogenated analogues of the methyl-imidazole linker, which promote the transition from nanoWenzel-like to nanoCassie-Baxter-like states, further enhancing surface hydrophobicity. Present results reveal the complex interface physics and chemistry between water and complex porous, molecular crystalline surfaces, providing a hint to tune their hydrophobicity.

10.
J Phys Chem C Nanomater Interfaces ; 127(37): 18310-18315, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37752902

RESUMO

Hydrophobic flexible zeolitic imidazole frameworks (ZIFs) represent reference microporous materials in the area of mechanical energy storage, conversion, and dissipation via non-wetting liquid intrusion-extrusion cycle. However, some of them exhibit drawbacks such as lack of stability, high intrusion pressure, or low intrusion volume that make them non-ideal materials to consider as candidates for real applications. In this work, we face these limitations by exploiting the hybrid ZIF concept. Concretely, a bimetallic SOD-like ZIF consisting of Co and Zn ions was synthesized and compared with Co-ZIF (ZIF-67) and Zn-ZIF (ZIF-8) showing for the first time that the hybrid ZIF combines the good stability of ZIF-8 with the higher water intrusion volume of ZIF-67. Moreover, it is shown that the hybrid-ZIF approach can be used to tune the intrusion/extrusion pressure, which is crucial for technological applications.

11.
ACS Omega ; 8(29): 26136-26146, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521663

RESUMO

Thermal management protects against external agents and increases the lifetime and performance of the devices in which it is implemented. Because of their ability to store and release a high amount of energy at a nearly constant temperature, phase change materials (PCMs) are promising thermoregulatory materials. Thus, the manufacture of PVDF fibers containing PCMs has advantages since PVDF is already used in elements that are susceptible to thermal management as a binder in batteries or as a base material for fabrics. This work presents a simple, versatile, in situ, cost-effective, and easy-to-scale-up method to produce PVDF-based fibers containing paraffin RT-28HC for thermal management. To achieve that goal, the microfluidic approach of coaxial flows was simplified to gravity-aided laminar jet injection into a bulk fluid, where fibers were produced by the solvent extraction mechanism. With this methodology, hollow PVDF fibers and core-shell PVDF fibers containing paraffin RT-28HC have been produced. The proposed approach resulted in fibers with up to 98 J/g of latent heat, with a hierarchical porous structure. SEM study of the fiber morphology has shown that PCM is in the form of slugs along the fibers. Such PCM distribution is maintained until the first melting cycle, when molten PCM spreads within the fiber under capillary forces, which was observed by an infrared camera. Manufactured composite fibers have shown low thermal conductivity and high elasticity, which suggest their potential application as a thermal insulation material with thermal buffer properties. Leakage tests revealed outstanding retention capacity with only 3.5% mass loss after 1000 melting/crystallization cycles. Finally, tensile tests were carried out to evaluate the mechanical properties of the fibers before and after thermal cycling.

12.
Nano Lett ; 23(12): 5430-5436, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294683

RESUMO

Zeolitic Imidazolate Frameworks (ZIF) find application in storage and dissipation of mechanical energy. Their distinctive properties linked to their (sub)nanometer size and hydrophobicity allow for water intrusion only under high hydrostatic pressure. Here we focus on the popular ZIF-8 material investigating the intrusion mechanism in its nanoscale cages, which is the key to its rational exploitation in target applications. In this work, we used a joint experimental/theoretical approach combining in operando synchrotron experiments during high-pressure intrusion experiments, molecular dynamics simulations, and stochastic models to reveal that water intrusion into ZIF-8 occurs by a cascade filling of connected cages rather than a condensation process as previously assumed. The reported results allowed us to establish structure/function relations in this prototypical microporous material, representing an important step to devise design rules to synthesize porous media.

13.
J Colloid Interface Sci ; 645: 775-783, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37172487

RESUMO

HYPOTHESIS: The behavior of Heterogeneous Lyophobic Systems (HLSs) comprised of a lyophobic porous material and a corresponding non-wetting liquid is affected by a variety of different structural parameters of the porous material. Dependence on exogenic properties such as crystallite size is desirable for system tuning as they are much more facilely modified. We explore the dependence of intrusion pressure and intruded volume on crystallite size, testing the hypothesis that the connection between internal cavities and bulk water facilitates intrusion via hydrogen bonding, a phenomenon that is magnified in smaller crystallites with a larger surface/volume ratio. EXPERIMENTS: Water intrusion/extrusion pressures and intrusion volume were experimentally measured for ZIF-8 samples of various crystallite sizes and compared to previously reported values. Alongside the practical research, molecular dynamics simulations and stochastic modeling were performed to illustrate the effect of crystallite size on the properties of the HLSs and uncover the important role of hydrogen bonding within this phenomenon. FINDINGS: A reduction in crystallite size led to a significant decrease of intrusion and extrusion pressures below 100 nm. Simulations indicate that this behavior is due to a greater number of cages being in proximity to bulk water for smaller crystallites, allowing cross-cage hydrogen bonds to stabilize the intruded state and lower the threshold pressure of intrusion and extrusion. This is accompanied by a reduction in the overall intruded volume. Simulations demonstrate that this phenomenon is linked to ZIF-8 surface half-cages exposed to water being occupied by water due to non-trivial termination of the crystallites, even at atmospheric pressure.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35656844

RESUMO

Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.

15.
ACS Appl Mater Interfaces ; 14(26): 30067-30079, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730678

RESUMO

Establishing molecular mechanisms of wetting and drying of hydrophobic porous materials is a general problem for science and technology within the subcategories of the theory of liquids, chromatography, nanofluidics, energy storage, recuperation, and dissipation. In this article, we demonstrate a new way to tackle this problem by exploring the effect of the topology of pure silica nanoparticles, nanotubes, and zeolites. Using molecular dynamics simulations, we show how secondary porosity promotes the intrusion of water into micropores and affects the hydrophobicity of materials. It is demonstrated herein that for nano-objects, the hydrophobicity can be controlled by changing the ratio of open to closed nanometer-sized lateral pores. This effect can be exploited to produce new materials for practical applications when the hydrophobicity needs to be regulated without significantly changing the chemistry or structure of the materials. Based on these simulations and theoretical considerations, for pure silica zeolites, we examined and then classified the experimental database of intrusion pressures, thus leading to the prediction of any zeolite's intrusion pressure. We show a correlation between the intrusion pressure and the ratio of the accessible pore surface area to total pore volume. The correlation is valid for some zeolites and mesoporous materials. It can facilitate choosing prospective candidates for further investigation and possible exploitation, especially for energy storage, recuperation, and dissipation.

16.
Nano Lett ; 22(6): 2164-2169, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258978

RESUMO

Intrusion (wetting)/extrusion (drying) of liquids in/from lyophobic nanoporous systems is key in many fields, including chromatography, nanofluidics, biology, and energy materials. Here we demonstrate that secondary topological features decorating main channels of porous systems dramatically affect the intrusion/extrusion cycle. These secondary features, allowing an unexpected bridging with liquid in the surrounding domains, stabilize the water stream intruding a micropore. This reduces the intrusion/extrusion barrier and the corresponding pressures without altering other properties of the system. Tuning the intrusion/extrusion pressures via subnanometric topological features represents a yet unexplored strategy for designing hydrophobic micropores. Though energy is not the only field of application, here we show that the proposed tuning approach may bring 20-75 MPa of intrusion/extrusion pressure increase, expanding the applicability of hydrophobic microporous materials.


Assuntos
Nanoporos , Água , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Pressão , Água/química
17.
ACS Appl Mater Interfaces ; 14(9): 11547-11558, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191666

RESUMO

Gas separation performances are usually degraded under humid conditions for many crystalline porous materials because of the lack of water stability and/or the competition of water vapor toward the interaction sites (e.g., open metal sites). Zeolitic imidazolate frameworks (ZIFs) are suitable candidates for practical applications in gas separation because of their excellent physical/chemical stabilities. However, the limitation of substituent positions in common ZIFs has prevented extensive pore engineering to improve their separation performance. In a type of gyroidal ZIFs with gie topology, the Schiff base moiety provides additional substituent positions, making it possible to modify the spatial arrangement of hydrophobic methyl groups. Herein, a new gyroidal ZIF, ZnBAIm (H2BAIm = 1,2-bis(1-(1H-imidazol-4-yl)ethylidene)hydrazine), is designed, synthesized, and characterized. The spatially modified ZnBAIm exhibits improved thermal/chemical/mechanical stabilities compared to ZnBIm (H2BIm = 1,2-bis((5H-imidazol-4-yl)methylene)hydrazine). ZnBAIm can remain intact up to about 480 °C in a N2 atmosphere and tolerate harsh treatments (e.g., 5 M NaOH aqueous solution at room temperature for 24 h and 190 MPa high pressure in the presence of water). Moreover, the modified pore and window sizes have improved significantly the ethane/ethylene selectivity and separation performance under humid conditions for ZnBAIm. Breakthrough experiments demonstrate efficient separation of a C2H6/C2H4 (50/50, v/v) binary gas mixture under ambient conditions; more importantly, the C2H6/C2H4 separation performance is unaffected under highly humid conditions (up to 80% RH). The separation performance is attributed to combined thermodynamic (stronger dispersion interaction with C2H6 than with C2H4) and kinetic factors (diffusion), determined by density functional theory calculations and kinetic adsorption study, respectively.

18.
Phys Chem Chem Phys ; 23(44): 25388-25400, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751284

RESUMO

Largely inspired by nature, hierarchical porous materials are attractive for a wide range of applications as they provide a unique combination of transport and interfacial properties. Hierarchical macro-nanoporous metals (HMNPM) are of particular interest due to their high thermal and electrical conductivities, high volumetric macroporosity as well as their strong capillary forces, and large surface area due to their nanopores. However, tuning the porosity of HMNPMs remains challenging and often requires complex multi-step synthesis methods. Here we demonstrate that controlling the dealloying kinetics of close-to-eutectic alloys allows the selective tuning of the porosity of a hierarchical metal from tens of nanometers to hundreds of micrometers. This was demonstrated by dealloying the Cu-Mg-Zn alloy of close-to-eutectic composition to develop trimodal hierarchical macro-nanoporous copper with an impressive porosity of 94 vol% in the form of macroscopic self-supporting bulk samples. A combination of dealloying experiments and density functional theory calculations indicate that while selective corrosion of chemical phases in the Cu-Mg-Zn alloy is triggered according to their Volta potential, the kinetics can be altered by confinement and non-homogeneity effects. The obtained insights into the kinetics of close-to-eutectic alloy dealloying can be used to develop other hierarchical porous metals with tunable porosity and controlled shape.

19.
J Phys Chem Lett ; 12(20): 4951-4957, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34009998

RESUMO

Negative compressibility (NC) is a phenomenon when an object expands/shrinks in at least one of its dimensions upon compression/decompression. NC is very rare and is of great interest for a number of applications. In this work a gigantic (more than one order of magnitude higher compared to the reported values) NC effect was recorded during intrusion-extrusion of a non-wetting liquid into a flexible porous structure. For this purpose, in situ high-pressure neutron scattering, intrusion-extrusion experiments, and DFT calculations were applied to a system consisting of water and a highly hydrophobic Cu2(tebpz) metal-organic framework (MOF), which upon water penetration expands in a and c directions to demonstrate NC coefficients more than order of magnitude higher compared to the highest values ever reported. The proposed approach is not limited to the materials used in this work and can be applied to achieve coefficients of negative linear compressibility of more than 103 TPa-1.

20.
ACS Nano ; 15(5): 9048-9056, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33982556

RESUMO

Efficient and compact energy conversion is at the heart of the sustainable development of humanity. In this work it is demonstrated that hydrophobic flexible nanoporous materials can be used for thermal-to-mechanical energy conversion when coupled with water. In particular, a reversible nonhysteretic wetting-drying (contraction-expansion) cycle provoked by periodic temperature fluctuations was realized for water and a superhydrophobic nanoporous Cu2(tebpz) MOF (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate). A thermal-to-mechanical conversion efficiency of ∼30% was directly recorded by high-precision PVT-calorimetry, while the operational cycle was confirmed by in operando neutron scattering. The obtained results provide an alternative approach for compact energy conversion exploiting solid-liquid interfacial energy in nanoscopic flexible heterogeneous systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...