Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nucleic Acids Res ; 51(20): 10992-11009, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791849

RESUMO

A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.


Assuntos
Núcleo Celular , Receptores Androgênicos , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Receptores Androgênicos/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral
2.
Hum Genomics ; 14(1): 39, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066815

RESUMO

The expression of the human ß-like globin genes follows a well-orchestrated developmental pattern, undergoing two essential switches, the first one during the first weeks of gestation (ε to γ), and the second one during the perinatal period (γ to ß). The γ- to ß-globin gene switching mechanism includes suppression of fetal (γ-globin, HbF) and activation of adult (ß-globin, HbA) globin gene transcription. In hereditary persistence of fetal hemoglobin (HPFH), the γ-globin suppression mechanism is impaired leaving these individuals with unusual elevated levels of fetal hemoglobin (HbF) in adulthood. Recently, the transcription factors KLF1 and BCL11A have been established as master regulators of the γ- to ß-globin switch. Previously, a genomic variant in the KLF1 gene, identified by linkage analysis performed on twenty-seven members of a Maltese family, was found to be associated with HPFH. However, variation in the levels of HbF among family members, and those from other reported families carrying genetic variants in KLF1, suggests additional contributors to globin switching. ASF1B was downregulated in the family members with HPFH. Here, we investigate the role of ASF1B in γ- to ß-globin switching and erythropoiesis in vivo. Mouse-human interspecies ASF1B protein identity is 91.6%. By means of knockdown functional assays in human primary erythroid cultures and analysis of the erythroid lineage in Asf1b knockout mice, we provide evidence that ASF1B is a novel contributor to steady-state erythroid differentiation, and while its loss affects the balance of globin expression, it has no major role in hemoglobin switching.


Assuntos
Proteínas de Ciclo Celular/genética , Eritropoese/genética , Chaperonas de Histonas/genética , Globinas beta/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Células HEK293 , Chaperonas de Histonas/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , gama-Globinas/genética
3.
Hum Mol Genet ; 29(15): 2535-2550, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32628253

RESUMO

The transcription factor zinc finger E-box binding protein 2 (ZEB2) controls embryonic and adult cell fate decisions and cellular maturation in many stem/progenitor cell types. Defects in these processes in specific cell types underlie several aspects of Mowat-Wilson syndrome (MOWS), which is caused by ZEB2 haplo-insufficiency. Human ZEB2, like mouse Zeb2, is located on chromosome 2 downstream of a ±3.5 Mb-long gene-desert, lacking any protein-coding gene. Using temporal targeted chromatin capture (T2C), we show major chromatin structural changes based on mapping in-cis proximities between the ZEB2 promoter and this gene desert during neural differentiation of human-induced pluripotent stem cells, including at early neuroprogenitor cell (NPC)/rosette state, where ZEB2 mRNA levels increase significantly. Combining T2C with histone-3 acetylation mapping, we identified three novel candidate enhancers about 500 kb upstream of the ZEB2 transcription start site. Functional luciferase-based assays in heterologous cells and NPCs reveal co-operation between these three enhancers. This study is the first to document in-cis Regulatory Elements located in ZEB2's gene desert. The results further show the usability of T2C for future studies of ZEB2 REs in differentiation and maturation of multiple cell types and the molecular characterization of newly identified MOWS patients that lack mutations in ZEB2 protein-coding exons.


Assuntos
Cromatina/ultraestrutura , Elementos Facilitadores Genéticos/genética , Doença de Hirschsprung/genética , Deficiência Intelectual/genética , Microcefalia/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Fácies , Regulação da Expressão Gênica/genética , Doença de Hirschsprung/patologia , Proteínas de Homeodomínio/genética , Humanos , Deficiência Intelectual/patologia , Camundongos , Microcefalia/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/ultraestrutura , Sequências Reguladoras de Ácido Nucleico
4.
Development ; 147(10)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32253238

RESUMO

The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.


Assuntos
Ventrículos Laterais/embriologia , Ventrículos Laterais/crescimento & desenvolvimento , Neurogênese/genética , Bulbo Olfatório/embriologia , Bulbo Olfatório/crescimento & desenvolvimento , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Técnicas de Inativação de Genes , Interneurônios/metabolismo , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/metabolismo , Fatores de Transcrição SOXD/metabolismo , Transdução de Sinais/imunologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
5.
Stem Cells ; 38(2): 202-217, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31675135

RESUMO

Cooperative actions of extrinsic signals and cell-intrinsic transcription factors alter gene regulatory networks enabling cells to respond appropriately to environmental cues. Signaling by transforming growth factor type ß (TGFß) family ligands (eg, bone morphogenetic proteins [BMPs] and Activin/Nodal) exerts cell-type specific and context-dependent transcriptional changes, thereby steering cellular transitions throughout embryogenesis. Little is known about coordinated regulation and transcriptional interplay of the TGFß system. To understand intrafamily transcriptional regulation as part of this system's actions during development, we selected 95 of its components and investigated their mRNA-expression dynamics, gene-gene interactions, and single-cell expression heterogeneity in mouse embryonic stem cells transiting to neural progenitors. Interrogation at 24 hour intervals identified four types of temporal gene transcription profiles that capture all stages, that is, pluripotency, epiblast formation, and neural commitment. Then, between each stage we performed esiRNA-based perturbation of each individual component and documented the effect on steady-state mRNA levels of the remaining 94 components. This exposed an intricate system of multilevel regulation whereby the majority of gene-gene interactions display a marked cell-stage specific behavior. Furthermore, single-cell RNA-profiling at individual stages demonstrated the presence of detailed co-expression modules and subpopulations showing stable co-expression modules such as that of the core pluripotency genes at all stages. Our combinatorial experimental approach demonstrates how intrinsically complex transcriptional regulation within a given pathway is during cell fate/state transitions.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Humanos
6.
Haematologica ; 105(7): 1802-1812, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31582556

RESUMO

GATA1 is an essential transcriptional regulator of myeloid hematopoietic differentiation towards red blood cells. During erythroid differentiation, GATA1 forms different complexes with other transcription factors such as LDB1, TAL1, E2A and LMO2 ("the LDB1 complex") or with FOG1. The functions of GATA1 complexes have been studied extensively in definitive erythroid differentiation; however, the temporal and spatial formation of these complexes during erythroid development is unknown. We applied proximity ligation assay (PLA) to detect, localize and quantify individual interactions during embryonic stem cell differentiation and in mouse fetal liver (FL) tissue. We show that GATA1/LDB1 interactions appear before the proerythroblast stage and increase in a subset of the CD71+/TER119- cells to activate the terminal erythroid differentiation program in 12.5 day FL. Using Ldb1 and Gata1 knockdown FL cells, we studied the functional contribution of the GATA1/LDB1 complex during differentiation. This shows that the active LDB1 complex appears quite late at the proerythroblast stage of differentiation and confirms the power of PLA in studying the dynamic interaction of proteins in cell differentiation at the single cell level. We provide dynamic insight into the temporal and spatial formation of the GATA1 and LDB1 transcription factor complexes during hematopoietic development and differentiation.


Assuntos
Células-Tronco Embrionárias/citologia , Fator de Transcrição GATA1 , Proteínas com Domínio LIM , Animais , Diferenciação Celular , Proteínas de Ligação a DNA , Fator de Transcrição GATA1/genética , Fígado , Camundongos , Fatores de Transcrição
7.
Mol Syst Biol ; 14(6): e8214, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858282

RESUMO

The last decade has radically renewed our understanding of higher order chromatin folding in the eukaryotic nucleus. As a result, most current models are in support of a mostly hierarchical and relatively stable folding of chromosomes dividing chromosomal territories into A- (active) and B- (inactive) compartments, which are then further partitioned into topologically associating domains (TADs), each of which is made up from multiple loops stabilized mainly by the CTCF and cohesin chromatin-binding complexes. Nonetheless, the structure-to-function relationship of eukaryotic genomes is still not well understood. Here, we focus on recent work highlighting the biophysical and regulatory forces that contribute to the spatial organization of genomes, and we propose that the various conformations that chromatin assumes are not so much the result of a linear hierarchy, but rather of both converging and conflicting dynamic forces that act on it.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Eucariotos/genética , Genoma , Animais , Humanos , Conformação de Ácido Nucleico , Dobramento de Proteína , Transcrição Gênica
8.
Stem Cells ; 35(3): 611-625, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27739137

RESUMO

In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell-fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA-sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast-like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial-to-mesenchymal transition (EMT), and DNA-(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1-binding sites correlate with loss-of-methylation in neural-stimulating conditions, however, after the cells initially acquired the correct DNA-methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re-adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA-methylation with irreversible commitment to differentiation. Stem Cells 2017;35:611-625.


Assuntos
Linhagem da Célula , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Camundongos , Camundongos Knockout , Neurônios/citologia , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Componente Principal , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA , Transcrição Gênica
9.
Artigo em Inglês | MEDLINE | ID: mdl-28035242

RESUMO

BACKGROUND: The dynamic three-dimensional chromatin architecture of genomes and its co-evolutionary connection to its function-the storage, expression, and replication of genetic information-is still one of the central issues in biology. Here, we describe the much debated 3D architecture of the human and mouse genomes from the nucleosomal to the megabase pair level by a novel approach combining selective high-throughput high-resolution chromosomal interaction capture (T2C), polymer simulations, and scaling analysis of the 3D architecture and the DNA sequence. RESULTS: The genome is compacted into a chromatin quasi-fibre with ~5 ± 1 nucleosomes/11 nm, folded into stable ~30-100 kbp loops forming stable loop aggregates/rosettes connected by similar sized linkers. Minor but significant variations in the architecture are seen between cell types and functional states. The architecture and the DNA sequence show very similar fine-structured multi-scaling behaviour confirming their co-evolution and the above. CONCLUSIONS: This architecture, its dynamics, and accessibility, balance stability and flexibility ensuring genome integrity and variation enabling gene expression/regulation by self-organization of (in)active units already in proximity. Our results agree with the heuristics of the field and allow "architectural sequencing" at a genome mechanics level to understand the inseparable systems genomic properties.

10.
Mol Syst Biol ; 12(12): 891, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27940490

RESUMO

Mammalian interphase chromosomes fold into a multitude of loops to fit the confines of cell nuclei, and looping is tightly linked to regulated function. Chromosome conformation capture (3C) technology has significantly advanced our understanding of this structure-to-function relationship. However, all 3C-based methods rely on chemical cross-linking to stabilize spatial interactions. This step remains a "black box" as regards the biases it may introduce, and some discrepancies between microscopy and 3C studies have now been reported. To address these concerns, we developed "i3C", a novel approach for capturing spatial interactions without a need for cross-linking. We apply i3C to intact nuclei of living cells and exploit native forces that stabilize chromatin folding. Using different cell types and loci, computational modeling, and a methylation-based orthogonal validation method, "TALE-iD", we show that native interactions resemble cross-linked ones, but display improved signal-to-noise ratios and are more focal on regulatory elements and CTCF sites, while strictly abiding to topologically associating domain restrictions.


Assuntos
Núcleo Celular/genética , Cromossomos Humanos/química , Cromossomos Humanos/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interfase , Células K562 , Mamíferos/genética , Modelos Genéticos , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA/métodos
11.
Genome Res ; 26(11): 1478-1489, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27633323

RESUMO

Mammalian cells have developed intricate mechanisms to interpret, integrate, and respond to extracellular stimuli. For example, tumor necrosis factor (TNF) rapidly activates proinflammatory genes, but our understanding of how this occurs against the ongoing transcriptional program of the cell is far from complete. Here, we monitor the early phase of this cascade at high spatiotemporal resolution in TNF-stimulated human endothelial cells. NF-κB, the transcription factor complex driving the response, interferes with the regulatory machinery by binding active enhancers already in interaction with gene promoters. Notably, >50% of these enhancers do not encode canonical NF-κB binding motifs. Using a combination of genomics tools, we find that binding site selection plays a key role in NF-κΒ-mediated transcriptional activation and repression. We demonstrate the latter by describing the synergy between NF-κΒ and the corepressor JDP2. Finally, detailed analysis of a 2.8-Mbp locus using sub-kbp-resolution targeted chromatin conformation capture and genome editing uncovers how NF-κΒ that has just entered the nucleus exploits pre-existing chromatin looping to exert its multimodal role. This work highlights the involvement of topology in cis-regulatory element function during acute transcriptional responses, where primary DNA sequence and its higher-order structure constitute a regulatory context leading to either gene activation or repression.


Assuntos
Sequência Consenso , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Células Cultivadas , Cromatina/metabolismo , Edição de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , NF-kappa B/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
12.
Nature ; 523(7558): 53-8, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26106861

RESUMO

In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA/fisiologia , Transdução de Sinais , Spliceossomos/metabolismo , Processamento Alternativo/fisiologia , Linhagem Celular , Cromatina/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Ativação Enzimática , Humanos , Raios Ultravioleta
13.
Nucleic Acids Res ; 42(21)2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260593

RESUMO

The characterization of transcription factor complexes and their binding sites in the genome by affinity purification has yielded tremendous new insights into how genes are regulated. The affinity purification requires either the use of antibodies raised against the factor of interest itself or by high-affinity binding of a C- or N-terminally added tag sequence to the factor. Unfortunately, fusing extra amino acids to the termini of a factor can interfere with its biological function or the tag may be inaccessible inside the protein. Here, we describe an effective solution to that problem by integrating the 'tag' close to the nuclear localization sequence domain of the factor. We demonstrate the effectiveness of this approach with the transcription factors Fli-1 and Irf2bp2, which cannot be tagged at their extremities without loss of function. This resulted in the identification of novel proteins partners and a new hypothesis on the contribution of Fli-1 to hematopoiesis.


Assuntos
Sinais de Localização Nuclear , Proteínas Nucleares/análise , Fatores de Transcrição/análise , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas Nucleares/química , Proteína Proto-Oncogênica c-fli-1/análise , Proteína Proto-Oncogênica c-fli-1/química , Proteína Proto-Oncogênica c-fli-1/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Am J Respir Cell Mol Biol ; 51(2): 311-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24669837

RESUMO

Lung development is determined by the coordinated expression of several key genes. Previously, we and others have shown the importance of the sex determining region Y-box 2 (Sox2) gene in lung development. Transgenic expression of Sox2 during lung development resulted in cystic airways, and here we show that modulating the timing of ectopic Sox2 expression in the branching regions of the developing lung results in variable cystic lesions resembling the spectrum of the human congenital disorder congenital cystic adenomatoid malformation (CCAM). Sox2 dominantly differentiated naive epithelial cells into the proximal lineage irrespective of the presence of Fgf10. Sox2 directly induced the expression of Trp63, the master switch toward the basal cell lineage and induced the expression of Gata6, a factor involved in the emergence of bronchoalveolar stem cells. We showed that SOX2 and TRP63 are coexpressed in the lungs of human patients with type II CCAM. The combination of premature differentiation toward the proximal cell lineage and the induction of proliferation resulted in the cyst-like structures. Thus, we show that Sox2 is directly responsible for the emergence of two lung progenitor cells: basal cells by regulating the master gene Trp63 and bronchoalveolar stem cells by regulating Gata6.


Assuntos
Malformação Adenomatoide Cística Congênita do Pulmão/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Malformação Adenomatoide Cística Congênita do Pulmão/genética , Malformação Adenomatoide Cística Congênita do Pulmão/patologia , Células Epiteliais/patologia , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição GATA6/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Células HEK293 , Humanos , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Fenótipo , Fosfoproteínas/genética , Fatores de Transcrição SOXB1/genética , Células-Tronco/patologia , Técnicas de Cultura de Tecidos , Transativadores/genética , Fatores de Transcrição/genética , Transfecção , Proteínas Supressoras de Tumor/genética , Regulação para Cima
15.
Curr Opin Genet Dev ; 25: 62-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24534714

RESUMO

Gene activity is not only determined by processes occurring very close to or at the gene, such as transcription factor or RNA Polymerase II (PolII) binding. A multitude of past observations such as the localization of inactive chromatin to the nuclear periphery and active chromatin in the centre of the nucleus, the clustering of highly transcribed genes at transcriptional hotspots as well as the looping of active genes out of the chromosome territory made clear that the 'context matters' and the 3-dimensional organization of the chromatin fibre is fundamental for genome function. Here we want to review whether and how the different architectural levels that were recently identified by high-throughput chromatin conformation capturing techniques influence transcription.


Assuntos
Núcleo Celular/química , Núcleo Celular/genética , Transcrição Gênica , Animais , Cromatina/química , Cromatina/genética , Humanos , Imageamento Tridimensional
16.
Proc Natl Acad Sci U S A ; 111(3): 996-1001, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24335803

RESUMO

Recent studies of genome-wide chromatin interactions have revealed that the human genome is partitioned into many self-associating topological domains. The boundary sequences between domains are enriched for binding sites of CTCC-binding factor (CTCF) and the cohesin complex, implicating these two factors in the establishment or maintenance of topological domains. To determine the role of cohesin and CTCF in higher-order chromatin architecture in human cells, we depleted the cohesin complex or CTCF and examined the consequences of loss of these factors on higher-order chromatin organization, as well as the transcriptome. We observed a general loss of local chromatin interactions upon disruption of cohesin, but the topological domains remain intact. However, we found that depletion of CTCF not only reduced intradomain interactions but also increased interdomain interactions. Furthermore, distinct groups of genes become misregulated upon depletion of cohesin and CTCF. Taken together, these observations suggest that CTCF and cohesin contribute differentially to chromatin organization and gene regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Mitose , Família Multigênica , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transcriptoma , Coesinas
17.
PLoS One ; 8(8): e70325, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967072

RESUMO

The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control.


Assuntos
Células do Corno Anterior , Diferenciação Celular , Interneurônios , Medula Espinal/citologia , Medula Espinal/fisiologia , Animais , Movimento Celular , Camundongos , Camundongos Knockout
18.
Nucleic Acids Res ; 41(13): e132, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23671339

RESUMO

The coupling of chromosome conformation capture (3C) with next-generation sequencing technologies enables the high-throughput detection of long-range genomic interactions, via the generation of ligation products between DNA sequences, which are closely juxtaposed in vivo. These interactions involve promoter regions, enhancers and other regulatory and structural elements of chromosomes and can reveal key details of the regulation of gene expression. 3C-seq is a variant of the method for the detection of interactions between one chosen genomic element (viewpoint) and the rest of the genome. We present r3Cseq, an R/Bioconductor package designed to perform 3C-seq data analysis in a number of different experimental designs. The package reads a common aligned read input format, provides data normalization, allows the visualization of candidate interaction regions and detects statistically significant chromatin interactions, thus greatly facilitating hypothesis generation and the interpretation of experimental results. We further demonstrate its use on a series of real-world applications.


Assuntos
Cromossomos/química , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Software , Animais , Imunoprecipitação da Cromatina , Genes myb , Genômica/métodos , Camundongos , Globinas beta/genética
19.
Eur J Hum Genet ; 21(12): 1403-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23572027

RESUMO

ß-Thalassaemia is one of the most common autosomal recessive single-gene disorder worldwide, with a carrier frequency of 12% in Cyprus. Prenatal tests for at risk pregnancies use invasive methods and development of a non-invasive prenatal diagnostic (NIPD) method is of paramount importance to prevent unnecessary risks inherent to invasive methods. Here, we describe such a method by assessing a modified version of next generation sequencing (NGS) using the Illumina platform, called 'targeted sequencing', based on the detection of paternally inherited fetal alleles in maternal plasma. We selected four single-nucleotide polymorphisms (SNPs) located in the ß-globin locus with a high degree of heterozygosity in the Cypriot population. Spiked genomic samples were used to determine the specificity of the platform. We could detect the minor alleles in the expected ratio, showing the specificity of the platform. We then developed a multiplexed format for the selected SNPs and analysed ten maternal plasma samples from pregnancies at risk. The presence or absence of the paternal mutant allele was correctly determined in 27 out of 34 samples analysed. With haplotype analysis, NIPD was possible on eight out of ten families. This is the first study carried out for the NIPD of ß-thalassaemia using targeted NGS and haplotype analysis. Preliminary results show that NGS is effective in detecting paternally inherited alleles in the maternal plasma.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Diagnóstico Pré-Natal/métodos , Talassemia beta/genética , Alelos , Feminino , Haplótipos/genética , Humanos , Mutação/genética , Gravidez
20.
Genes Dev ; 27(7): 767-77, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23592796

RESUMO

Transcription steps are marked by different modifications of the C-terminal domain of RNA polymerase II (RNAPII). Phosphorylation of Ser5 and Ser7 by cyclin-dependent kinase 7 (CDK7) as part of TFIIH marks initiation, whereas phosphorylation of Ser2 by CDK9 marks elongation. These processes are thought to take place in localized transcription foci in the nucleus, known as "transcription factories," but it has been argued that the observed clusters/foci are mere fixation or labeling artifacts. We show that transcription factories exist in living cells as distinct foci by live-imaging fluorescently labeled CDK9, a kinase known to associate with active RNAPII. These foci were observed in different cell types derived from CDK9-mCherry knock-in mice. We show that these foci are very stable while highly dynamic in exchanging CDK9. Chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) data show that the genome-wide binding sites of CDK9 and initiating RNAPII overlap on transcribed genes. Immunostaining shows that CDK9-mCherry foci colocalize with RNAPII-Ser5P, much less with RNAPII-Ser2P, and not with CDK12 (a kinase reported to be involved in the Ser2 phosphorylation) or with splicing factor SC35. In conclusion, transcription factories exist in living cells, and initiation and elongation of transcripts takes place in different nuclear compartments.


Assuntos
RNA Polimerase II/metabolismo , Imagem com Lapso de Tempo , Transcrição Gênica , Animais , Células Cultivadas , Quinase 9 Dependente de Ciclina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Estrutura Terciária de Proteína , Transporte Proteico , RNA Polimerase II/química , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...