Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(45): e2304168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37463679

RESUMO

Chemical bath deposition (CBD) is widely used to deposit tin oxide (SnOx ) as an electron-transport layer in perovskite solar cells (PSCs). The conventional recipe uses thioglycolic acid (TGA) to facilitate attachments of SnOx particles onto the substrate. However, nonvolatile TGA is reported to harm the operational stability of PSCs. In this work, a volatile oxalic acid (OA) is introduced as an alternative to TGA. OA, a dicarboxylic acid, functions as a chemical linker for the nucleation and attachment of particles to the substrate in the chemical bath. Moreover, OA can be readily removed through thermal annealing followed by a mild H2 O2 treatment, as shown by FTIR measurements. Synergistically, the mild H2 O2 treatment selectively oxidizes the surface of the SnOx layer, minimizing nonradiative interface carrier recombination. EELS (electron-energy-loss spectroscopy) confirms that the SnOx surface is dominated by Sn4+ , while the bulk is a mixture of Sn2+ and Sn4+ . This rational design of a CBD SnOx layer leads to devices with T85 ≈1500 h, a significant improvement over the TGA-based device with T80 ≈250 h. The champion device reached a power conversion efficiency of 24.6%. This work offers a rationale for optimizing the complex parameter space of CBD SnOx to achieve efficient and stable PSCs.

2.
Nat Photonics ; 17(1): 59-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36628352

RESUMO

Extreme miniaturization of infrared spectrometers is critical for their integration into next-generation consumer electronics, wearables and ultrasmall satellites. In the infrared, there is a necessary compromise between high spectral bandwidth and high spectral resolution when miniaturizing dispersive elements, narrow band-pass filters and reconstructive spectrometers. Fourier-transform spectrometers are known for their large bandwidth and high spectral resolution in the infrared; however, they have not been fully miniaturized. Waveguide-based Fourier-transform spectrometers offer a low device footprint, but rely on an external imaging sensor such as bulky and expensive InGaAs cameras. Here we demonstrate a proof-of-concept miniaturized Fourier-transform waveguide spectrometer that incorporates a subwavelength and complementary-metal-oxide-semiconductor-compatible colloidal quantum dot photodetector as a light sensor. The resulting spectrometer exhibits a large spectral bandwidth and moderate spectral resolution of 50 cm-1 at a total active spectrometer volume below 100 µm × 100 µm × 100 µm. This ultracompact spectrometer design allows the integration of optical/analytical measurement instruments into consumer electronics and space devices.

3.
Adv Sci (Weinh) ; 8(6): 2003360, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747735

RESUMO

Infrared light detection enables diverse technologies ranging from night vision to gas analysis. Emerging technologies such as low-cost cameras for self-driving cars require highly sensitive, low-cost photodetector cameras with spectral sensitivities up to wavelengths of 10 µm. For this purpose, colloidal quantum dot (QD) graphene phototransistors offer a viable alternative to traditional technologies owing to inexpensive synthesis and processing of QDs. However, the spectral range of QD/graphene phototransistors is thus far limited to 1.6 µm. Here, HgTe QD/graphene phototransistors with spectral sensitivity up to 3 µm are presented, with specific detectivities of 6 × 108 Jones at a wavelength of 2.5 µm and a temperature of 80 K. Even at kHz light modulation frequencies, specific detectivities exceed 108 Jones making them suitable for fast video imaging. The simple device architecture and QD film patterning in combination with a broad spectral sensitivity manifest an important step toward low-cost, multi-color infrared cameras.

4.
Adv Mater ; 33(9): e2007355, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33480450

RESUMO

Luminescent organic-inorganic low-dimensional ns2 metal halides are of rising interest as thermographic phosphors. The intrinsic nature of the excitonic self-trapping provides for reliable temperature sensing due to the existence of a temperature range, typically 50-100 K wide, in which the luminescence lifetimes (and quantum yields) are steeply temperature-dependent. This sensitivity range can be adjusted from cryogenic temperatures to above room temperature by structural engineering, thus enabling diverse thermometric and thermographic applications ranging from protein crystallography to diagnostics in microelectronics. Owing to the stable oxidation state of Sb3+ , Sb(III)-based halides are far more attractive than all major non-heavy-metal alternatives (Sn-, Ge-, Bi-based halides). In this work, the relationship between the luminescence characteristics and crystal structure and microstructure of TPP2 SbBr5 (TPP = tetraphenylphosphonium) is established, and then its potential is showcased as environmentally stable and robust phosphor for remote thermography. The material is easily processable into thin films, which is highly beneficial for high-spatial-resolution remote thermography. In particular, a compelling combination of high spatial resolution (1 µm) and high thermometric precision (high specific sensitivities of 0.03-0.04 K-1 ) is demonstrated by fluorescence-lifetime imaging of a heated resistive pattern on a flat substrate, covered with a solution-spun film of TPP2 SbBr5 .

5.
ACS Appl Mater Interfaces ; 13(1): 848-856, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33350310

RESUMO

Colloidal PbS quantum dot (QD)/graphene hybrid photodetectors are emerging QD technologies for affordable infrared light detectors. By interfacing the QDs with graphene, the photosignal of these detectors is amplified, leading to high responsivity values. While these detectors have been mainly operated at room temperature, low-temperature operation is required for extending their spectral sensitivity beyond a wavelength of 3 µm. Here, we unveil the temperature-dependent response of PbS QD/graphene phototransistors by performing steady-state and time-dependent measurements over a large temperature range of 80-300 K. We find that the temperature dependence of photoinduced charge carrier transfer from the QD layer to graphene is (i) not impeded by freeze-out of the (Schottky-like) potential barrier at low temperatures, (ii) tremendously sensitive to QD surface states (surface oxidation), and (iii) minimally affected by the ligand exposure time and QD layer thickness. Moreover, the specific detectivity of our detectors increases with cooling, with a maximum measured specific detectivity of at least 1010 Jones at a wavelength of 1280 nm and a temperature of 80 K, which is an order of magnitude larger compared to the corresponding room temperature value. The temperature- and gate voltage-dependent characterization presented here constitutes an important step in expanding our knowledge of charge transfer at interfaces of low-dimensional materials and toward the realization of next-generation optoelectronic devices.

6.
J Am Chem Soc ; 141(50): 19839-19849, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31763836

RESUMO

Attaining thermodynamic stability of colloids in a broad range of concentrations has long been a major thrust in the field of colloidal ligand-capped semiconductor nanocrystals (NCs). This challenge is particularly pressing for the novel NCs of cesium lead halide perovskites (CsPbX3; X = Cl, Br) owing to their highly dynamic and labile surfaces. Herein, we demonstrate that soy lecithin, a mass-produced natural phospholipid, serves as a tightly binding surface-capping ligand suited for a high-reaction yield synthesis of CsPbX3 NCs (6-10 nm) and allowing for long-term retention of the colloidal and structural integrity of CsPbX3 NCs in a broad range of concentrations-from a few ng/mL to >400 mg/mL (inorganic core mass). The high colloidal stability achieved with this long-chain zwitterionic ligand can be rationalized with the Alexander-De Gennes model that considers the increased particle-particle repulsion due to branched chains and ligand polydispersity. The versatility and immense practical utility of such colloids is showcased by the single NC spectroscopy on ultradilute samples and, conversely, by obtaining micrometer-thick, optically homogeneous dense NC films in a single spin-coating step from ultraconcentrated colloids.

7.
Nano Lett ; 15(8): 5635-40, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26207728

RESUMO

Postsynthetic chemical transformations of colloidal nanocrystals, such as ion-exchange reactions, provide an avenue to compositional fine-tuning or to otherwise inaccessible materials and morphologies. While cation-exchange is facile and commonplace, anion-exchange reactions have not received substantial deployment. Here we report fast, low-temperature, deliberately partial, or complete anion-exchange in highly luminescent semiconductor nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). By adjusting the halide ratios in the colloidal nanocrystal solution, the bright photoluminescence can be tuned over the entire visible spectral region (410-700 nm) while maintaining high quantum yields of 20-80% and narrow emission line widths of 10-40 nm (from blue to red). Furthermore, fast internanocrystal anion-exchange is demonstrated, leading to uniform CsPb(Cl/Br)3 or CsPb(Br/I)3 compositions simply by mixing CsPbCl3, CsPbBr3, and CsPbI3 nanocrystals in appropriate ratios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...