Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 51(11): 1596-1606, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31676859

RESUMO

A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived ß-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human ß cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevenção & controle , Glucose/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Transportador 8 de Zinco/metabolismo , Adolescente , Adulto , Idoso , Diabetes Mellitus Tipo 2/patologia , Feminino , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Transportador 8 de Zinco/genética
2.
Wellcome Open Res ; 4: 150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31976379

RESUMO

Type 2 diabetes (T2D) is a global pandemic with a strong genetic component, but most causal genes influencing the disease risk remain unknown. It is clear, however, that the pancreatic beta cell is central to T2D pathogenesis. In vitro gene-knockout (KO) models to study T2D risk genes have so far focused on rodent beta cells. However, there are important structural and functional differences between rodent and human beta cell lines. With that in mind, we have developed a robust pipeline to create a stable CRISPR/Cas9 KO in an authentic human beta cell line (EndoC-ßH1). The KO pipeline consists of a dual lentiviral sgRNA strategy and we targeted three genes ( INS, IDE, PAM) as a proof of concept. We achieved a significant reduction in mRNA levels and complete protein depletion of all target genes. Using this dual sgRNA strategy, up to 94 kb DNA were cut out of the target genes and the editing efficiency of each sgRNA exceeded >87.5%. Sequencing of off-targets showed no unspecific editing. Most importantly, the pipeline did not affect the glucose-responsive insulin secretion of the cells. Interestingly, comparison of KO cell lines for NEUROD1 and SLC30A8 with siRNA-mediated knockdown (KD) approaches demonstrate phenotypic differences. NEUROD1-KO cells were not viable and displayed elevated markers for ER stress and apoptosis. NEUROD1-KD, however, only had a modest elevation, by 34%, in the pro-apoptotic transcription factor CHOP and a gene expression profile indicative of chronic ER stress without evidence of elevated cell death. On the other hand, SLC30A8-KO cells demonstrated no reduction in K ATP channel gene expression in contrast to siRNA silencing. Overall, this strategy to efficiently create stable KO in the human beta cell line EndoC-ßH1 will allow for a better understanding of genes involved in beta cell dysfunction, their underlying functional mechanisms and T2D pathogenesis.

3.
Curr Diab Rep ; 17(9): 76, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28758174

RESUMO

PURPOSE OF REVIEW: Genome-wide association studies (GWAS) for type 2 diabetes (T2D) risk have identified a large number of genetic loci associated with disease susceptibility. However, progress moving from association signals through causal genes to functional understanding has so far been slow, hindering clinical translation. This review discusses the benefits and limitations of emerging, unbiased approaches for prioritising causal genes at T2D risk loci. RECENT FINDINGS: Candidate causal genes can be identified by a number of different strategies that rely on genetic data, genomic annotations, and functional screening of selected genes. To overcome the limitations of each particular method, integration of multiple data sets is proving essential for establishing confidence in the prioritised genes. Previous studies have also highlighted the need to support these efforts through identification of causal variants and disease-relevant tissues. Prioritisation of causal genes at T2D risk loci by integrating complementary lines of evidence promises to accelerate our understanding of disease pathology and promote translation into new therapeutics.


Assuntos
Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Predisposição Genética para Doença , Testes Genéticos , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...