Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 30(26): 8920-34, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592214

RESUMO

The classically conditioned eyeblink response in the rabbit is one of the best-characterized behavioral models of associative learning. It is cerebellum dependent, with many studies indicating that the hemispheral part of Larsell's cerebellar cortical lobule VI (HVI) is critical for the acquisition and performance of learned responses. However, there remain uncertainties about the distribution of the critical regions within and around HVI. In this learning, the unconditional stimulus is thought to be carried by periocular-activated climbing fibers. Here, we have used a microelectrode array to perform systematic, high-resolution, electrophysiological mapping of lobule HVI and surrounding folia in rabbits, to identify regions with periocular-evoked climbing fiber activity. Climbing fiber local field potentials and single-unit action potentials were recorded, and electrode locations were reconstructed from histological examination of brain sections. Much of the sampled cerebellar cortex, including large parts of lobule HVI, was unresponsive to periocular input. However, short-latency ipsilateral periocular-evoked climbing fiber responses were reliably found within a region in the ventral part of the medial wall of lobule HVI, extending to the base of the primary fissure. Small infusions of the AMPA/kainate receptor antagonist CNQX into this electrophysiologically defined region in awake rabbits diminished or abolished conditioned responses. The known parasagittal zonation of the cerebellum, supported by zebrin immunohistochemistry, indicates that these areas have connections consistent with an essential role in eyeblink conditioning. These small eyeblink-related areas provide cerebellar cortical targets for analysis of eyeblink conditioning at a neuronal level but need to be localized with electrophysiological identification in individual animals.


Assuntos
Piscadela/fisiologia , Córtex Cerebelar/fisiologia , Neurônios/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Anestésicos Intravenosos/farmacologia , Animais , Piscadela/efeitos dos fármacos , Córtex Cerebelar/efeitos dos fármacos , Condicionamento Palpebral/efeitos dos fármacos , Condicionamento Palpebral/fisiologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Imuno-Histoquímica , Microeletrodos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Coelhos , Fatores de Tempo , Uretana/farmacologia , Vigília/efeitos dos fármacos
2.
Curr Biol ; 18(6): 393-400, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18356057

RESUMO

BACKGROUND: There is evidence that sleep is important for memory consolidation, but the underlying neuronal changes are not well understood. We studied the effect of sleep modulation on memory and on neuronal activity in a memory system of the domestic chick brain after the learning process of imprinting. Neurons in this system become, through imprinting, selectively responsive to a training (imprinting) stimulus and so possess the properties of a memory trace. RESULTS: The proportion of neurons responsive to the training stimulus reaches a maximum the day after training. We demonstrate that sleep is necessary for this maximum to be achieved, that sleep stabilizes the initially unstable, selective responses of neurons to the imprinting stimulus, and that for sleep to be effective, it must occur during a particular period of time after training. During this period, there is a time-dependent increase in EEG activity in the 5-6 Hz band, that is, in the lower range of the theta bandwidth. The effects of sleep disturbance on consolidation cannot be attributed to fatigue or to stress. CONCLUSIONS: We establish that long-term trace consolidation requires sleep within a restricted period shortly after learning. Undisturbed sleep is necessary for the stabilization of long-term memory, measured at the behavioral and neuronal levels, and of long-term but not short-term neuronal responsiveness to the training stimulus.


Assuntos
Fixação Psicológica Instintiva/fisiologia , Neurônios/fisiologia , Reconhecimento Psicológico/fisiologia , Sono/fisiologia , Animais , Galinhas , Eletroencefalografia , Fatores de Tempo , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...