Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 26(13-14): 733-746, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32598235

RESUMO

Cancer survivorship has increased considerably, but common cancer treatments may threaten female reproductive health and fertility. In females, standard fertility preservation techniques include egg and embryo banking and ovarian tissue cryopreservation, but these methods are not suitable for all individuals. Emerging fertility preservation technologies include in vitro follicle growth and ovarian bioprosthetics. Although these platforms hold tremendous promise, they remain in the preclinical phase likely because of our inability to adequately phenocopy the complexity of the in vivo ovarian environment. The goal of this study was to use an established research archive of fixed human ovarian tissue established through the Oncofertility Consortium to better understand the dynamics and milieu of growing follicles within the human ovary. We performed a histological analysis of the immediate surroundings of primary and secondary stage follicles. We evaluated oocyte and follicle diameters of these growing follicles, analyzed their growth trajectories, and mapped their precise relationships to other stage follicles within a defined area. We also stratified our findings according to participant age and previous treatment history. Our results serve as in vivo benchmarks for follicles grown in vitro and provide insight into how follicles should be seeded spatially within bioprosthetic ovaries, potentially improving the efficacy and clinical translation of these emerging technologies. Impact statement Life-preserving cancer treatments have greatly increased survivorship. However, treatments often have off-target health consequences that threaten female reproductive health and fertility. Although several standard fertility preservation options exist, there is a constant need to explore and expand options for all populations. In vitro follicle growth and ovarian bioprosthetics are new experimental procedures, which are currently limited to proof of concept. In this study, we analyzed human ovarian tissue from a deidentified biospecimen repository to characterize the growing follicle landscape with the ultimate goal of informing bioengineering practices. This spatial analysis pinpoints the geometry of growing follicles within the human ovary and provides a framework for paralleling this environment in ex vivo platforms.


Assuntos
Folículo Ovariano/fisiologia , Criopreservação/métodos , Feminino , Preservação da Fertilidade/métodos , Humanos , Folículo Ovariano/metabolismo , Ovário/citologia , Ovário/metabolismo , Engenharia Tecidual/métodos
2.
J Ovarian Res ; 11(1): 72, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165884

RESUMO

BACKGROUND: Radiation exposure is known to cause accelerated aging and damage to the ovary, but the contribution of indirect versus direct effects is not well understood. We used the Small Animal Radiation Research Platform (SARRP) (Xstrahl) to deliver radiation to precise fields equivalent to clinical practice, allowing us to investigate systemic versus targeted damage in a structure as small as the mouse ovary. The X-ray dose was kept constant at 1 Gy, but the field varied. Mice either received total body irradiation (TBI), radiation targeted to both ovaries (T2), or radiation targeted to one ovary (left) while the contralateral ovary (right) was spared (T1). Sham mice, handled similarly to the other cohorts but not exposed to radiation, served as controls. Two weeks post-exposure, ovaries were harvested and analyzed histologically to identify and count follicles within each ovary. RESULTS: Radiation significantly reduced primordial follicles in the TBI and T2 cohorts compared to the Sham cohort. There were no significant differences between these two irradiated groups. These findings suggest that at 1 Gy, the extent of damage to the ovary caused by radiation is similar despite the different delivery methods. When investigating the T1 cohort, targeted ovaries showed a significant decrease in primordial and growing follicles compared to non-targeted contralateral ovaries. CONCLUSIONS: These findings demonstrate that the SARRP is an effective strategy for delivering precise ionizing radiation to small organs such as mouse ovaries. Such tools will facilitate identifying the relative risks to ovarian function associated with different radiation fields as well as screening the efficacy of emerging fertoprotective agents.


Assuntos
Modelos Animais , Ovário/efeitos da radiação , Lesões Experimentais por Radiação , Raios X , Animais , Feminino , Camundongos , Ovário/patologia , Radioterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...