Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 8: 762116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778377

RESUMO

5-Fluorouracil (5-Fu) and leucovorin (LV) are often given in combination to treat colorectal cancer. 5-Fu/LV prevents cell proliferation by inhibiting thymidylate synthase, which catalyzes the conversion of deoxyuridine monophosphate to deoxythymidine monophosphate. While 5-Fu has been shown to cause cognitive impairment, the synergistic effect of 5-Fu with LV has not been fully explored. The present investigation was designed to assess how the combination of 5-Fu and LV affect cognition in a murine model. Six-month-old male mice were used in this study; 15 mice received saline injections and 15 mice received 5-Fu/LV injections. One month after treatment, the elevated plus maze, Y-maze, and Morris water maze behavioral tasks were performed. Brains were then extracted, cryosectioned, and stained for CD68 to assay microglial activation and with tomato lectin to assay the vasculature. All animals were able to locate the visible and hidden platform locations in the water maze. However, a significant impairment in spatial memory retention was observed in the probe trial after the first day of hidden-platform training (first probe trial) in animals that received 5-Fu/LV, but these animals showed spatial memory retention by day 5. There were no significant increases in inflammation as measured by CD68, but 5-Fu/LV treatment did modulate blood vessel morphology. Tandem mass tag proteomics analysis identified 6,049 proteins, 7 of which were differentially expressed with a p-value of <0.05 and a fold change of >1.5. The present data demonstrate that 5-Fu/LV increases anxiety and significantly impairs spatial memory retention.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34477962

RESUMO

How do animals use visual systems to extract specific features of a visual scene and respond appropriately? The medicinal leech, Hirudo verbana, is a predatory, quasi-amphibious annelid with a rich sensorium that is an excellent system in which to study how sensory cues are encoded, and how key features of visual images are mapped into the CNS. The leech visual system is broadly distributed over its entire body, consisting of five pairs of cephalic eyecups and seven segmentally iterated pairs of dermal sensilla in each mid-body segment. Leeches have been shown to respond behaviorally to both green and near ultraviolet light (UV, 365-375 nm). Here, we used electrophysiological techniques to show that spectral responses by dermal sensilla are mapped across the dorsal-ventral axis, such that the ventral sensilla respond strongly to UV light, while dorsal sensilla respond strongly to visible light, broadly tuned around green. These results establish how key features of visual information are initially encoded by spatial mapping of photo-response profiles of primary photoreceptors and provide insight into how these streams of information are presented to the CNS to inform behavioral responses.


Assuntos
Hirudo medicinalis/metabolismo , Estimulação Luminosa/métodos , Células Fotorreceptoras de Invertebrados/metabolismo , Sensilas/metabolismo , Animais , Hirudo medicinalis/química , Mecanorreceptores/química , Mecanorreceptores/metabolismo , Células Fotorreceptoras de Invertebrados/química , Sensilas/química
3.
Neurobiol Aging ; 97: 73-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161213

RESUMO

Alzheimer's disease (AD) is associated with disturbances in blood glucose regulation, and type-2 diabetes elevates the risk for dementia. A role for amyloid-ß peptide (Aß) in linking these age-related conditions has been proposed, tested primarily in transgenic mouse lines that overexpress mutated amyloid precursor protein (APP). Because APP has its own impacts on glucose regulation, we examined the BRI-Aß42 line ("Aß42-tg"), which produces extracellular Aß1-42 in the CNS without elevation of APP. We also looked for interactions with diet-induced obesity (DIO) resulting from a high-fat, high-sucrose ("western") diet. Aß42-tg mice were impaired in both spatial memory and glucose tolerance. Although DIO induced insulin resistance, Aß1-42 accumulation did not, and the impacts of DIO and Aß on glucose tolerance were merely additive. Aß42-tg mice exhibited no significant differences from wild-type in insulin production, body weight, lipidemia, appetite, physical activity, respiratory quotient, an-/orexigenic factors, or inflammatory factors. These negative findings suggested that the phenotype in these mice arose from perturbation of glucose excursion in an insulin-independent tissue. To wit, cerebral cortex of Aß42-tg mice had reduced glucose utilization, similar to human patients with AD. This was associated with insufficient trafficking of glucose transporter 1 to the plasma membrane in parenchymal brain cells, a finding also documented in human AD tissue. Together, the lower cerebral metabolic rate of glucose and diminished function of parenchymal glucose transporter 1 indicate that aberrant regulation of blood glucose in AD likely reflects a central phenomenon, resulting from the effects of Aß on cerebral parenchyma, rather than a generalized disruption of hypothalamic or peripheral endocrinology. The involvement of a specific glucose transporter in this deficit provides a new target for the design of AD therapies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/fisiologia , Astrócitos/metabolismo , Glicemia/metabolismo , Encéfalo/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/genética , Animais , Diabetes Mellitus Tipo 2/complicações , Feminino , Expressão Gênica , Insulina/metabolismo , Masculino , Camundongos Transgênicos , Obesidade/complicações , Fragmentos de Peptídeos/metabolismo , Risco
4.
Cell Metab ; 32(5): 767-785.e7, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32941799

RESUMO

Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABAB receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.


Assuntos
Sistema Nervoso Central/metabolismo , Neuroglia/metabolismo , Animais , Drosophila melanogaster , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa
5.
Front Behav Neurosci ; 14: 96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670032

RESUMO

The space extending beyond Earth's magnetosphere is subject to a complex field of high-energy charged nuclei, which are capable of traversing spacecraft shielding and human tissues, inducing dense ionization events. The central nervous system is a major area of concern for astronauts who will be exposed to the deep-space radiation environment on a mission to Mars, as charged-particle radiation has been shown to elicit changes to the dendritic arbor within the hippocampus of rodents, and related cognitive-behavioral deficits. We exposed 6-month-old male mice to whole-body 1H (0.5 Gy; 150 MeV/n; 18-19 cGy/minute) and an hour later to 16O (0.1Gy; 600 MeV/n; 18-33 Gy/min) at NASA's Space Radiation Laboratory as a galactic cosmic ray-relevant model. Animals were housed with bedding which provides cognitive enrichment. Mice were tested for cognitive behavior 9 months after exposure to elucidate late radiation effects. Radiation induced significant deficits in novel object recognition and short-term spatial memory (Y-maze). Additionally, we observed opposing morphological differences between the mature granular and pyramidal neurons throughout the hippocampus, with increased dendritic length in the dorsal dentate gyrus and reduced length and complexity in the CA1 subregion of the hippocampus. Dendritic spine analyses revealed a severe reduction in mushroom spine density throughout the hippocampus of irradiated animals. Finally, we detected no general effect of radiation on single-nucleotide polymorphisms in immediate early genes, and genes involved in inflammation but found a higher variant allele frequency in the antioxidants thioredoxin reductase 2 and 3 loci.

6.
Toxicol Sci ; 173(1): 156-170, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651976

RESUMO

Breast cancer (BC) is the most common cancer among women. Fortunately, BC survival rates have increased because the implementation of adjuvant chemotherapy leading to a growing population of survivors. However, chemotherapy-induced cognitive impairments (CICIs) affect up to 75% of BC survivors and may be driven by inflammation and oxidative stress. Chemotherapy-induced cognitive impairments can persist 20 years and hinder survivors' quality of life. To identify early effects of CMF administration in mice, we chose to evaluate adult female mice at 2-week postchemotherapy. Mice received weekly IP administration of CMF (or saline) for 4 weeks, completed behavioral testing, and were sacrificed 2 weeks following their final CMF injection. Behavioral results indicated long-term memory (LTM) impairments postchemotherapy, but did not reveal short-term memory deficits. Dendritic morphology and spine data found increases in overall spine density within CA1 basal and CA3 basal dendrites, but no changes in DG, CA1 apical, or CA3 apical dendrites. Further analysis revealed decreases in arborization across the hippocampus (DG, CA1 apical and basal, CA3 apical and basal). These physiological changes within the hippocampus correlate with our behavioral data indicating LTM impairments following CMF administration in female mice 2-week postchemotherapy. Hippocampal cytokine analysis identified decreases in IL-1α, IL-1ß, IL-3, IL-10, and TNF-α levels.


Assuntos
Ciclofosfamida/toxicidade , Fluoruracila/toxicidade , Hipocampo/efeitos dos fármacos , Metotrexato/toxicidade , Neurônios/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Região CA1 Hipocampal , Quimioterapia Adjuvante , Dendritos , Espinhas Dendríticas , Modelos Animais de Doenças , Feminino , Camundongos , Qualidade de Vida
7.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781689

RESUMO

Aging is characterized by increased inflammation and deterioration of the cellular stress responses such as the oxidant/antioxidant equilibrium, DNA damage repair fidelity, and telomeric attrition. All these factors contribute to the increased radiation sensitivity in the elderly as shown by epidemiological studies of the Japanese atomic bomb survivors. There is a global increase in the aging population, who may be at increased risk of exposure to ionizing radiation (IR) as part of cancer therapy or accidental exposure. Therefore, it is critical to delineate the factors that exacerbate age-related radiation sensitivity and neurocognitive decline. The transcription factor CCAAT enhancer binding protein delta (C/EBPδ) is implicated with regulatory roles in neuroinflammation, learning, and memory, however its role in IR-induced neurocognitive decline and aging is not known. The purpose of this study was to delineate the role of C/EBPδ in IR-induced neurocognitive decline in aged mice. We report that aged Cebpd-/- mice exposed to acute IR exposure display impairment in short-term memory and spatial memory that correlated with significant alterations in the morphology of neurons in the dentate gyrus (DG) and CA1 apical and basal regions. There were no significant changes in the expression of inflammatory markers. However, the expression of superoxide dismutase 2 (SOD2) and catalase (CAT) were altered post-IR in the hippocampus of aged Cebpd-/- mice. These results suggest that Cebpd may protect from IR-induced neurocognitive dysfunction by suppressing oxidative stress in aged mice.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/deficiência , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Radiação Ionizante , Envelhecimento , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Dendritos/metabolismo , Giro Denteado/patologia , Mediadores da Inflamação/metabolismo , Aprendizagem em Labirinto , Memória de Curto Prazo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Memória Espacial , Extratos de Tecidos
8.
Radiat Res ; 191(3): 278-294, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664396

RESUMO

The radiation environment in space remains a major concern for manned space exploration, as there is currently no shielding material capable of fully protecting flight crews. Additionally, there is growing concern for the social and cognitive welfare of astronauts, due to prolonged radiation exposure and confinement they will experience on a mission to Mars. In this artice, we report on the late effects of 16O-particle radiation on social and cognitive behavior and neuronal morphology in the hippocampus of adult female mice. Six-month-old mice received 16O-particle whole-body irradiation at doses of either 0.25 or 0.1 Gy (600 MeV/n; 18-33 cGy/min) at the NASA's Space Radiation Laboratory in Upton, NY. At nine months postirradiation, the animals underwent behavioral testing in the three-chamber sociability, novel object recognition and Y-maze paradigms. Exposure to 0.1 or 0.25 Gy 16O significantly impaired object memory, a 0.25 Gy dose impaired social novelty learning, but neither dosage impaired short-term spatial memory. We observed significant decreases in mushroom spine density and dendrite morphology in the dentate gyrus, cornu ammonis 3, 2 and 1 of the hippocampus, which are critical areas for object novelty and sociability processing. Our data suggest exposure to 16O modulates hippocampal pyramidal and granular neurons and induces behavioral deficits at a time point of nine months after exposure in females.


Assuntos
Comportamento Animal/efeitos da radiação , Cognição/efeitos da radiação , Hipocampo/fisiologia , Hipocampo/efeitos da radiação , Oxigênio/efeitos adversos , Comportamento Social , Animais , Espinhas Dendríticas/efeitos da radiação , Relação Dose-Resposta à Radiação , Meio Ambiente Extraterreno , Feminino , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
9.
Synapse ; 73(6): e22085, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30586195

RESUMO

Cancer survivorship has increased greatly as therapies have become more advanced and effective. Thus, we must now focus on improving the quality of life of patients after treatment. After chemotherapy, many patients experience chemotherapy-induced cognitive decline, indicating a need to investigate pathologies associated with this condition. In this study, we addressed cognitive impairment after thioTEPA treatment by assessing behavior and assaying cytokine production and the structure of dendrites in the hippocampus. Male mice were given three intraperitoneal injections of thioTEPA. Five weeks later, the mice underwent behavior testing, and brains were collected for Golgi staining and cytokine analysis. Behavior tests included y-maze and Morris water maze and licking behavioral task. Cytokines measured include: IL-1α, IL-1ß, IL-2, IL-3, IL-4, IL-5, IL-10, IL-12p70, MCP-1, TNF-α, GMCSF, and RANTES. We observed decreased memory retention in behavioral tasks. Also, dendritic arborization and length were decreased after chemotherapy treatment. Finally, thioTEPA decreased cytokine production in animals treated with chemotherapy, compared to saline-treated controls. Here, we used a mouse model to correlate the decreases in dendritic complexity and inflammatory cytokine production with cognitive impairment after chemotherapy.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Tiotepa/efeitos adversos , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição , Citocinas/metabolismo , Injeções Intraperitoneais , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Tiotepa/administração & dosagem , Tiotepa/farmacologia
10.
Life Sci Space Res (Amst) ; 17: 51-62, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29753414

RESUMO

NASA's Missions to Mars and beyond will expose flight crews to potentially dangerous levels of charged-particle radiation. Of all charged nuclei, 1H is the most abundant charged particle in both the galactic cosmic ray (GCR) and solar particle event (SPE) spectra. There are currently no functional spacecraft shielding materials that are able to mitigate the charged-particle radiation encountered in space. Recent studies have demonstrated cognitive injuries due to high-dose 1H exposures in rodents. Our study investigated the effects of 1H irradiation on neuronal morphology in the hippocampus of adult male mice. 6-month-old mice received whole-body exposure to 1H at 0.5 and 1 Gy (150 MeV/n; 0.35-0.55 Gy/min) at NASA's Space Radiation Laboratory in Upton, NY. At 9-months post-irradiation, we tested each animal's open-field exploratory performance. After sacrifice, we dissected the brains along the midsagittal plane, and then either fixed or dissected further and snap-froze them. Our data showed that exposure to 0.5 Gy or 1 Gy 1H significantly increased animals' anxiety behavior in open-field testing. Our micromorphometric analyses revealed significant decreases in mushroom spine density and dendrite morphology in the Dentate Gyrus, Cornu Ammonis 3 and 1 of the hippocampus, and lowered expression of synaptic markers. Our data suggest 1H radiation significantly increased exploration anxiety and modulated the dendritic spine and dendrite morphology of hippocampal neurons at a dose of 0.5 or 1 Gy.


Assuntos
Radiação Cósmica/efeitos adversos , Hipocampo/fisiologia , Hidrogênio/efeitos adversos , Neurônios/fisiologia , Atividade Solar , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica/métodos , Hipocampo/efeitos da radiação , Masculino , Camundongos , Neurônios/efeitos da radiação
11.
Life Sci Space Res (Amst) ; 17: 63-73, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29753415

RESUMO

Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.


Assuntos
Cognição/efeitos da radiação , Espinhas Dendríticas/patologia , Hipocampo/patologia , Neurônios/patologia , Radioisótopos de Oxigênio/efeitos adversos , Animais , Espinhas Dendríticas/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neurônios/efeitos da radiação
12.
Radiat Res ; 189(6): 605-617, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29584587

RESUMO

Chemotherapy has been successfully used to reduce radiation dose and volume for most pediatric patients. However, because of the failure of chemotherapeutic agents to cross the blood-brain barrier and the lack of response of some brain tumors to these agents, radiation therapy is still used to treat many childhood cancers with CNS involvement. In this study, we investigated the radiation effects on cognition and dendritic structure in the hippocampus in juvenile male mice. Twenty-one-day-old male C57BL/6 mice were irradiated using the small animal radiation research platform (SARRP). Animals were exposed to either a 10 Gy single dose or 10 Gy × 2 fractionated doses of X-ray cranial radiation. Five weeks after irradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water maze. Significant impairment in spatial memory retention was observed in the probe trial after the first day of hidden-platform training (first probe trial) in animals that received either 10 Gy single-dose or 10 Gy × 2 fractionated doses. However, by day 5, mice that received a 10 Gy single dose showed spatial memory retention in the probe trials, whereas mice that received the 20 Gy fractionated doses remained impaired. During Y-maze testing, animals exposed to radiation were impaired; the irradiated mice were not able to distinguish among the three Y-maze arms and spent approximately the same amount of time in all three arms during the retention trial. Radiation significantly compromised the dendritic architecture and reduced spine density throughout the hippocampal trisynaptic network.


Assuntos
Comportamento Animal/efeitos da radiação , Cognição/efeitos da radiação , Dendritos/efeitos da radiação , Animais , Dendritos/metabolismo , Comportamento Exploratório/efeitos da radiação , Hipocampo/citologia , Hipocampo/fisiologia , Hipocampo/efeitos da radiação , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Memória Espacial/efeitos da radiação
13.
Behav Brain Res ; 346: 21-28, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229546

RESUMO

Acute lymphoblastic leukemia (ALL) is the most prevalent childhood cancer and accounts for 26.8% of cancer diagnoses among children, worldwide-approximately 3000 children each year. While advancements in treating ALL have led to a remission rate of more than 90%, many survivors experience adverse neurocognitive and/or neurobehavioral effects as a result of intrathecal chemotherapy. Methotrexate (MTX) is commonly administered with cytosine arabinoside (AraC, cytarabine) during intrathecal chemotherapy for ALL. To date, few studies exist that test the cognitive effects of intrathecal injections of MTX/AraC on juvenile populations. The purpose of our study was to investigate the combined effects of MTX/AraC on cognition and dendritic structure in the hippocampus in juvenile male mice. Twenty, 21-day-old male C57BL/6 mice were used in this study; 10 mice received intrathecal MTX/AraC treatment, and 10 were given intrathecal saline injections. Five weeks after injections, we tested the animals' hippocampus-dependent cognitive performance in the Morris water maze. After the first day of hidden-platform training, we observed that the mice that received MTX/AraC treatment showed signs of significant impairment in spatial memory retention. MTX/AraC treatment significantly compromised the dendritic architecture and reduced mushroom spine density in the dorsal ganglion (DG), CA1, and CA3 areas of the hippocampus. The present data provided evidence that MTX/AraC compromised the dendritic architecture and impaired hippocampal dependent cognition. This could provide insight into chemotherapy-induced cognitive decline in juvenile patients treated for ALL.


Assuntos
Antimetabólitos Antineoplásicos/toxicidade , Cognição/efeitos dos fármacos , Citarabina/toxicidade , Dendritos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Metotrexato/toxicidade , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Dendritos/patologia , Hipocampo/patologia , Injeções Espinhais , Leucócitos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Memória Espacial/efeitos dos fármacos
14.
Radiat Res ; 189(1): 53-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136391

RESUMO

Radiation from galactic cosmic rays (GCR) poses a significant health risk for deep-space flight crews. GCR are unique in their extremely high-energy particles. With current spacecraft shielding technology, some of the predominant particles astronauts would be exposed to are 1H + 16O. Radiation has been shown to cause cognitive deficits in mice. The hippocampus plays a key role in memory and cognitive tasks; it receives information from the cortex, undergoes dendritic-dependent processing and then relays information back to the cortex. In this study, we investigated the effects of combined 1H + 16O irradiation on cognition and dendritic structures in the hippocampus of adult male mice three months postirradiation. Six-month-old male C57BL/6 mice were irradiated first with 1H (0.5 Gy, 150 MeV/n) and 1 h later with 16O (0.1 Gy, 600 MeV/n) at the NASA Space Radiation Laboratory (Upton, NY). Three months after irradiation, animals were tested for hippocampus-dependent cognitive performance using the Y-maze. Upon sacrifice, molecular and morphological assessments were performed on hippocampal tissues. During Y-maze testing, the irradiated mice failed to distinguish the novel arm, spending approximately the same amount of time in all three arms during the retention trial relative to sham-treated controls. Irradiated animals also showed changes in expression of glutamate receptor subunits and synaptic density-associated proteins. 1H + 16O radiation compromised dendritic morphology in the cornu ammonis 1 and dentate gyrus within the hippocampus. These data indicate cognitive injuries due to 1H + 16O at three months postirradiation.


Assuntos
Hipocampo/fisiologia , Hipocampo/efeitos da radiação , Hidrogênio/efeitos adversos , Memória de Curto Prazo/efeitos da radiação , Oxigênio/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Radiação Cósmica/efeitos adversos , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Sinapses/efeitos da radiação
15.
J Vis Exp ; (124)2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28671647

RESUMO

Dendritic spines are the protuberances from the neuronal dendritic shafts that contain  excitatory synapses. The morphological and branching variations of the neuronal dendrites within the hippocampus are implicated in cognition and memory formation. There are several approaches to Golgi staining, all of which have been useful for determining the morphological characteristics of dendritic arbors and produce a clear background. The present Golgi-Cox method, (a slight variation of the protocol that is provided with a commercial Golgi staining kit), was designed to assess how a relatively low dose of the chemotherapeutic drug 5-flurouracil (5-Fu) would affect dendritic morphology, the number of spines, and the complexity of arborization within the hippocampus. The 5-Fu significantly modulated the dendritic complexity and decreased the spine density throughout the hippocampus in a region-specific manner. The data presented show that the Golgi staining method effectively stained the mature neurons in the CA1, the CA3, and the dentate gyrus (DG) of the hippocampus. This protocol reports the details for each step so that other researchers can reliably stain tissue throughout the brain with high quality results and minimal troubleshooting.


Assuntos
Dendritos/ultraestrutura , Hipocampo/ultraestrutura , Plasticidade Neuronal/efeitos dos fármacos , Coloração e Rotulagem/métodos , Fixação de Tecidos/métodos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/ultraestrutura , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/ultraestrutura , Dendritos/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Giro Denteado/efeitos dos fármacos , Giro Denteado/ultraestrutura , Fluoruracila/farmacologia , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL
16.
Behav Brain Res ; 316: 215-224, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27599618

RESUMO

5-Fluorouracil (5-Fu) is commonly used chemotherapy drug, but it can lead to the impairment of cognitive function. The pathogenesis of this injury is unknown but may involve modifications to dendritic structure and/or alterations in dendritic spine density and morphology. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and dendrite morphology are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. A total of 28 one-year-old C57BL6/J male mice were used in this study; 14 mice received 5-Fu treatment and 14 were given saline injections. One month post treatment, 14 cytokines were measured at the same time Golgi samples were taken. 8 analytes were significantly elevated in mice treated with 5-Fu. 5-Fu significantly compromised the dendritic architecture and reduced spine density throughout the hippocampal tri-synaptic network. The present data provide the evidence that 5-Fu has deleterious effects on mature neurons associated with hippocampal learning and memory.


Assuntos
Envelhecimento , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Fluoruracila/farmacologia , Hipocampo/citologia , Imunossupressores/farmacologia , Regulação para Cima/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Dendritos/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coloração pela Prata
17.
Behav Processes ; 128: 1-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27038859

RESUMO

Melatonin is a hormone rhythmically secreted at night by the pineal gland in vertebrates. In diurnal mammals, melatonin is present during the inactive phase of the rest/activity cycle, and in primates it directly facilitates sleep and decreases body temperature. However, the role of the pineal gland for the promotion of sleep at night has not yet been studied in non-primate diurnal mammalian species. Here, the authors directly examined the hypothesis that the pineal gland contributes to diurnality in Nile grass rats by decreasing activity and increasing sleep at night, and that this could occur via effects on circadian mechanisms or masking, or both. Removing the pineal gland had no effect on the hourly distribution of activity across a 12:12 light-dark (LD) cycle or on the patterns of sleep-like behavior at night. Masking effects of light at night on activity were also not significantly different in pinealectomized and control grass rats, as 1h pulses of light stimulated increases in activity of sham and pinealectomized animals to a similar extent. In addition, the circadian regulation of activity was unaffected by the surgical condition of the animals. Our results suggest that the pineal gland does not contribute to diurnality in the grass rat, thus highlighting the complexity of temporal niche transitions. The current data raise interesting questions about how and why genetic and neural mechanisms linking melatonin to sleep regulatory systems might vary among mammals that reached a diurnal niche via parallel and independent pathways.


Assuntos
Ritmo Circadiano/fisiologia , Muridae/fisiologia , Glândula Pineal/fisiologia , Sono/fisiologia , Animais , Feminino , Luz , Atividade Motora/fisiologia , Fotoperíodo , Glândula Pineal/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...