Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 3): 159996, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356771

RESUMO

Wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be useful for monitoring population-wide coronavirus disease 2019 (COVID-19) infections, especially given asymptomatic infections and limitations in diagnostic testing. We aimed to detect SARS-CoV-2 RNA in wastewater and compare viral concentrations to COVID-19 case numbers in the respective counties and sewersheds. Influent 24-hour composite wastewater samples were collected from July to December 2020 from two municipal wastewater treatment plants serving different population sizes in Orange and Chatham Counties in North Carolina. After a concentration step via HA filtration, SARS-CoV-2 RNA was detected and quantified by reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) and quantitative PCR (RT-qPCR), targeting the N1 and N2 nucleocapsid genes. SARS-CoV-2 RNA was detected by RT-ddPCR in 100 % (24/24) and 79 % (19/24) of influent wastewater samples from the larger and smaller plants, respectively. In comparison, viral RNA was detected by RT-qPCR in 41.7 % (10/24) and 8.3 % (2/24) of samples from the larger and smaller plants, respectively. Positivity rates and method agreement further increased for the RT-qPCR assay when samples with positive signals below the limit of detection were counted as positive. The wastewater data from the larger plant generally correlated (⍴ ~0.5, p < 0.05) with, and even anticipated, the trends in reported COVID-19 cases, with a notable spike in measured viral RNA preceding a spike in cases when students returned to a college campus in the Orange County sewershed. Correlations were generally higher when using estimates of sewershed-level case data rather than county-level data. This work supports use of wastewater surveillance for tracking COVID-19 disease trends, especially in identifying spikes in cases. Wastewater-based epidemiology can be a valuable resource for tracking disease trends, allocating resources, and evaluating policy in the fight against current and future pandemics.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , RNA Viral
2.
Int J Hyg Environ Health ; 228: 113547, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387880

RESUMO

Achievement of United Nations Sustainable Development Goal 6.1 centers on the availability of a safely managed drinking water source for all. However, meeting the criteria for this goal is challenging on island systems and elsewhere with limited freshwater supplies. We measured microbial and chemical water quality over three years on San Cristobal Island, Galapagos, an island with limited freshwater supply, necessitating use of cisterns or roof tanks to ensure water availability in households. Our results showed that the municipal water treatment plants generally produced high quality drinking water but detection of Escherichia coli in 2-30% of post-treatment distribution samples suggests contamination and/or regrowth during distribution and storage. Linear regression revealed a modest, negative relationship between residual chlorine and microbial concentrations in drinking water samples, while 24-h antecedent rainfall only slightly increased microbial counts. Taken together, our results underscore the challenge of providing a safely managed drinking water source where limited freshwater quantities result in intermittent flow and require storage at the household level. Efforts to meet sustainable development goals for island systems will likely need to consider water availability for any treatment technologies or programs aimed at meeting water quality goals.


Assuntos
Água Potável , Desenvolvimento Sustentável , Qualidade da Água , Abastecimento de Água , Praias , Cloro/análise , Equador , Enterobacteriaceae/isolamento & purificação , Enterococcus/isolamento & purificação , Chuva , Microbiologia da Água , Poluentes da Água/análise , Purificação da Água
3.
Front Microbiol ; 9: 1775, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158906

RESUMO

The North American prairie covered about 3.6 million-km2 of the continent prior to European contact. Only 1-2% of the original prairie remains, but the soils that developed under these prairies are some of the most productive and fertile in the world, containing over 35% of the soil carbon in the continental United States. Cultivation may alter microbial diversity and composition, influencing the metabolism of carbon, nitrogen, and other elements. Here, we explored the structure and functional potential of the soil microbiome in paired cultivated-corn (at the time of sampling) and never-cultivated native prairie soils across a three-states transect (Wisconsin, Iowa, and Kansas) using metagenomic and 16S rRNA gene sequencing and lipid analysis. At the Wisconsin site, we also sampled adjacent restored prairie and switchgrass plots. We found that agricultural practices drove differences in community composition and diversity across the transect. Microbial biomass in prairie samples was twice that of cultivated soils, but alpha diversity was higher with cultivation. Metagenome analyses revealed denitrification and starch degradation genes were abundant across all soils, as were core genes involved in response to osmotic stress, resource transport, and environmental sensing. Together, these data indicate that cultivation shifted the microbiome in consistent ways across different regions of the prairie, but also suggest that many functions are resilient to changes caused by land management practices - perhaps reflecting adaptations to conditions common to tallgrass prairie soils in the region (e.g., soil type, parent material, development under grasses, temperature and rainfall patterns, and annual freeze-thaw cycles). These findings are important for understanding the long-term consequences of land management practices to prairie soil microbial communities and their genetic potential to carry out key functions.

4.
Br J Nutr ; 116(12): 2020-2029, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27993177

RESUMO

Production of trimethylamine-N-oxide (TMAO), a biomarker of CVD risk, is dependent on intestinal microbiota, but little is known of dietary conditions promoting changes in gut microbial communities. Resistant starches (RS) alter the human microbiota. We sought to determine whether diets varying in RS and carbohydrate (CHO) content affect plasma TMAO levels. We also assessed postprandial glucose and insulin responses and plasma lipid changes to diets high and low in RS. In a cross-over trial, fifty-two men and women consumed a 2-week baseline diet (41 percentage of energy (%E) CHO, 40 % fat, 19 % protein), followed by 2-week high- and low-RS diets separated by 2-week washouts. RS diets were assigned at random within the context of higher (51-53 %E) v. lower CHO (39-40 %E) intake. Measurements were obtained in the fasting state and, for glucose and insulin, during a meal test matching the composition of the assigned diet. With lower CHO intake, plasma TMAO, carnitine, betaine and γ-butyrobetaine concentrations were higher after the high- v. low-RS diet (P<0·01 each). These metabolites were not differentially affected by high v. low RS when CHO intake was high. Although the high-RS meal reduced postprandial insulin and glucose responses when CHO intake was low (P<0·01 each), RS did not affect fasting lipids, lipoproteins, glucose or insulin irrespective of dietary CHO content. In conclusion, a lower-CHO diet high in RS was associated with higher plasma TMAO levels. These findings, together with the absence of change in fasting lipids, suggest that short-term high-RS diets do not improve markers of cardiometabolic health.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Dieta com Restrição de Carboidratos , Disbiose/dietoterapia , Metilaminas/agonistas , Amido/uso terapêutico , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , California/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/microbiologia , Estudos Cross-Over , Dieta da Carga de Carboidratos/efeitos adversos , Disbiose/etiologia , Disbiose/metabolismo , Disbiose/fisiopatologia , Feminino , Microbioma Gastrointestinal , Humanos , Hiperglicemia/prevenção & controle , Hiperinsulinismo/prevenção & controle , Resistência à Insulina , Masculino , Metilaminas/sangue , Metilaminas/metabolismo , Pessoa de Meia-Idade , Obesidade/microbiologia , Obesidade/fisiopatologia , Sobrepeso/microbiologia , Sobrepeso/fisiopatologia , Risco , Amido/efeitos adversos , Amido/metabolismo
5.
BMC Microbiol ; 15: 166, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26286031

RESUMO

BACKGROUND: The nucleotide second messengers cAMP and c-di-GMP allow many bacteria, including the human intestinal pathogen Vibrio cholerae, to respond to environmental stimuli with appropriate physiological adaptations. In response to limitation of specific carbohydrates, cAMP and its receptor CRP control the transcription of genes important for nutrient acquisition and utilization; c-di-GMP controls the transition between motile and sessile lifestyles often, but not exclusively, through transcriptional mechanisms. In this study, we investigated the convergence of cAMP and c-di-GMP signaling pathways in regulating the expression of gbpA. GbpA is a colonization factor that participates in the attachment of V. cholerae to N-acetylglucosamine-containing surfaces in its native aquatic environment and the host intestinal tract. RESULTS: We show that c-di-GMP inhibits gbpA activation in a fashion independent of the known transcription factors that directly sense c-di-GMP. Interestingly, inhibition of gbpA activation by c-di-GMP only occurs during growth on non-PTS dependent nutrient sources. Consistent with this result, we show that CRP binds to the gbpA promoter in a cAMP-dependent manner in vitro and drives transcription of gbpA in vivo. The interplay between cAMP and c-di-GMP does not broadly impact the CRP-cAMP regulon, but occurs more specifically at the gbpA promoter. CONCLUSIONS: These findings suggest that c-di-GMP directly interferes with the interaction of CRP-cAMP and the gbpA promoter via an unidentified regulator. The use of two distinct second messenger signaling mechanisms to regulate gbpA transcription may allow V. cholerae to finely modulate GbpA production, and therefore colonization of aquatic and host surfaces, in response to discrete environmental stimuli.


Assuntos
Adesinas Bacterianas/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , GMP Cíclico/metabolismo , Humanos , Sistemas do Segundo Mensageiro
6.
Front Microbiol ; 5: 522, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25408683

RESUMO

Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA