Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 5(4): 100888, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38532645

RESUMO

Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.


Assuntos
Fabaceae , Nódulos Radiculares de Plantas/fisiologia , Simbiose
2.
Plant Physiol ; 191(1): 729-746, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305683

RESUMO

Medicago (Medicago truncatula) establishes a symbiosis with the rhizobia Sinorhizobium sp, resulting in the formation of nodules where the bacteria fix atmospheric nitrogen. The loss of immunity repression or early senescence activation compromises symbiont survival and leads to the formation of nonfunctional nodules (fix-). Despite many studies exploring an overlap between immunity and senescence responses outside the nodule context, the relationship between these processes in the nodule remains poorly understood. To investigate this phenomenon, we selected and characterized three Medicago mutants developing fix- nodules and showing senescence responses. Analysis of specific defense (PATHOGENESIS-RELATED PROTEIN) or senescence (CYSTEINE PROTEASE) marker expression demonstrated that senescence and immunity seem to be antagonistic in fix- nodules. The growth of senescence mutants on non-sterile (sand/perlite) substrate instead of sterile in vitro conditions decreased nodule senescence and enhanced defense, indicating that environment can affect the immunity/senescence balance. The application of wounding stress on wild-type (WT) fix+ nodules led to the death of intracellular rhizobia and associated with co-stimulation of defense and senescence markers, indicating that in fix+ nodules the relationship between the two processes switches from opposite to synergistic to control symbiont survival during response to the stress. Our data show that the immune response in stressed WT nodules is linked to the repression of DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK), and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD), key genes involved in symbiotic immunity suppression. This study provides insight to understand the links between senescence and immunity in Medicago nodules.


Assuntos
Cisteína Proteases , Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolismo , Simbiose/genética , Proteínas de Plantas/metabolismo , Fixação de Nitrogênio/genética , Cisteína Proteases/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium meliloti/fisiologia
3.
Plant Cell Environ ; 45(10): 3100-3121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781677

RESUMO

Senescence determines plant organ lifespan depending on aging and environmental cues. During the endosymbiotic interaction with rhizobia, legume plants develop a specific organ, the root nodule, which houses nitrogen (N)-fixing bacteria. Unlike earlier processes of the legume-rhizobium interaction (nodule formation, N fixation), mechanisms controlling nodule senescence remain poorly understood. To identify nodule senescence-associated genes, we performed a dual plant-bacteria RNA sequencing approach on Medicago truncatula-Sinorhizobium meliloti nodules having initiated senescence either naturally (aging) or following an environmental trigger (nitrate treatment or salt stress). The resulting data allowed the identification of hundreds of plant and bacterial genes differentially regulated during nodule senescence, thus providing an unprecedented comprehensive resource of new candidate genes associated with this process. Remarkably, several plant and bacterial genes related to the cell cycle and stress responses were regulated in senescent nodules, including the rhizobial RpoE2-dependent general stress response. Analysis of selected core nodule senescence plant genes allowed showing that MtNAC969 and MtS40, both homologous to leaf senescence-associated genes, negatively regulate the transition between N fixation and senescence. In contrast, overexpression of a gene involved in the biosynthesis of cytokinins, well-known negative regulators of leaf senescence, may promote the transition from N fixation to senescence in nodules.


Assuntos
Medicago truncatula , Rhizobium , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Rhizobium/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Transcriptoma/genética
4.
Stand Genomic Sci ; 12: 75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255570

RESUMO

Strain CCMM B554, also known as FSM-MA, is a soil dwelling and nodule forming, nitrogen-fixing bacterium isolated from the nodules of the legume Medicago arborea L. in the Maamora Forest, Morocco. The strain forms effective nitrogen fixing nodules on species of the Medicago, Melilotus and Trigonella genera and is exceptional because it is a highly effective symbiotic partner of the two most widely used accessions, A17 and R108, of the model legume Medicago truncatula Gaertn. Based on 16S rRNA gene sequence, multilocus sequence and average nucleotide identity analyses, FSM-MA is identified as a new Ensifer meliloti strain. The genome is 6,70 Mbp and is comprised of the chromosome (3,64 Mbp) harboring 3574 predicted genes and two megaplasmids, pSymA (1,42 Mbp) and pSymB (1,64 Mbp) with respectively 1481 and 1595 predicted genes. The average GC content of the genome is 61.93%. The FSM-MA genome structure is highly similar and co-linear to other E. meliloti strains in the chromosome and the pSymB megaplasmid while, in contrast, it shows high variability in the pSymA plasmid. The large number of strain-specific sequences in pSymA as well as strain-specific genes on pSymB involved in the biosynthesis of the lipopolysaccharide and capsular polysaccharide surface polysaccharides may encode novel symbiotic functions explaining the high symbiotic performance of FSM-MA.

5.
Mol Plant Microbe Interact ; 30(5): 399-409, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28437159

RESUMO

Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity. The model legume Medicago truncatula forms nodules with several species of the Sinorhizobium genus. However, the efficiency of these bacterial strains is highly variable. In this study, we compared the symbiotic efficiency of Sinorhizobium meliloti strains Sm1021, 102F34, and FSM-MA, and Sinorhizobium medicae strain WSM419 on the two widely used M. truncatula accessions A17 and R108. The efficiency of the interactions was determined by multiple parameters. We found a high effectiveness of the FSM-MA strain with both M. truncatula accessions. In contrast, specific highly efficient interactions were obtained for the A17-WSM419 and R108-102F34 combinations. Remarkably, the widely used Sm1021 strain performed weakly on both hosts. We showed that Sm1021 efficiently induced nodule organogenesis but cannot fully activate the differentiation of the symbiotic nodule cells, explaining its weaker performance. These results will be informative for the selection of appropriate rhizobium strains in functional studies on symbiosis using these M. truncatula accessions, particularly for research focusing on late stages of the nodulation process.


Assuntos
Ecótipo , Medicago truncatula/microbiologia , Sinorhizobium/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Cinética , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Fixação de Nitrogênio , Fenótipo , Ploidias , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Simbiose
6.
Plant Cell Environ ; 37(3): 658-69, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23961805

RESUMO

PRAF proteins are present in all plants, but their functions remain unclear. We investigated the role of one member of the PRAF family, MtZR1, on the development of roots and nitrogen-fixing nodules in Medicago truncatula. We found that MtZR1 was expressed in all M. truncatula organs. Spatiotemporal analysis showed that MtZR1 expression in M. truncatula roots was mostly limited to the root meristem and the vascular bundles of mature nodules. MtZR1 expression in root nodules was down-regulated in response to various abiotic stresses known to affect nitrogen fixation efficiency. The down-regulation of MtZR1 expression by RNA interference in transgenic roots decreased root growth and impaired nodule development and function. MtZR1 overexpression resulted in longer roots and significant changes to nodule development. Our data thus indicate that MtZR1 is involved in the development of roots and nodules. To our knowledge, this work provides the first in vivo experimental evidence of a biological role for a typical PRAF protein in plants.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Núcleo Celular/metabolismo , Citosol/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Medicago truncatula/genética , Meristema/genética , Fixação de Nitrogênio/genética , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/genética , Feixe Vascular de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes/metabolismo , Nódulos Radiculares de Plantas/genética , Especificidade da Espécie , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Simbiose/genética , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica
7.
Mol Plant ; 5(5): 1068-81, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22419822

RESUMO

Evolutionary diversity can be driven by the interaction of plants with different environments. Molecular bases involved in ecological adaptations to abiotic constraints can be explored using genomic tools. Legumes are major crops worldwide and soil salinity is a main stress affecting yield in these plants. We analyzed in the Medicago truncatula legume the root transcriptome of two genotypes having contrasting responses to salt stress: TN1.11, sampled in a salty Tunisian soil, and the reference Jemalong A17 genotype. TN1.11 plants show increased root growth under salt stress as well as a differential accumulation of sodium ions when compared to A17. Transcriptomic analysis revealed specific gene clusters preferentially regulated by salt in root apices of TN1.11, notably those related to the auxin pathway and to changes in histone variant isoforms. Many genes encoding transcription factors (TFs) were also differentially regulated between the two genotypes in response to salt. Among those selected for functional studies, overexpression in roots of the A17 genotype of the bHLH-type TF most differentially regulated between genotypes improved significantly root growth under salt stress. Despite the global complexity of the differential transcriptional responses, we propose that an increase in this bHLH TF expression may be linked to the adaptation of M. truncatula to saline soil environments.


Assuntos
Perfilação da Expressão Gênica , Medicago truncatula/genética , Raízes de Plantas/metabolismo , Cloreto de Sódio/metabolismo , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Genótipo , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
8.
Plant J ; 70(2): 220-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22098255

RESUMO

Legume crops related to the model plant Medicago truncatula can adapt their root architecture to environmental conditions, both by branching and by establishing a symbiosis with rhizobial bacteria to form nitrogen-fixing nodules. Soil salinity is a major abiotic stress affecting plant yield and root growth. Previous transcriptomic analyses identified several transcription factors linked to the M. truncatula response to salt stress in roots, including NAC (NAM/ATAF/CUC)-encoding genes. Over-expression of one of these transcription factors, MtNAC969, induced formation of a shorter and less-branched root system, whereas RNAi-mediated MtNAC969 inactivation promoted lateral root formation. The altered root system of over-expressing plants was able to maintain its growth under high salinity, and roots in which MtNAC969 was down-regulated showed improved growth under salt stress. Accordingly, expression of salt stress markers was decreased or induced in MtNAC969 over-expressing or RNAi roots, respectively, suggesting a repressive function for this transcription factor in the salt-stress response. Expression of MtNAC969 in central symbiotic nodule tissues was induced by nitrate treatment, and antagonistically affected by salt in roots and nodules, similarly to senescence markers. MtNAC969 RNAi nodules accumulated amyloplasts in the nitrogen-fixing zone, and were prematurely senescent. Therefore, the MtNAC969 transcription factor, which is differentially affected by environmental cues in root and nodules, participates in several pathways controlling adaptation of the M. truncatula root system to the environment.


Assuntos
Medicago truncatula/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Nódulos Radiculares de Plantas/genética , Fatores de Transcrição/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Hibridização In Situ , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/ultraestrutura , Homologia de Sequência de Aminoácidos , Sinorhizobium meliloti/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Simbiose , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
9.
Plant Cell ; 22(7): 2171-83, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20675575

RESUMO

The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation-PCR assays revealed that HB1 directly recognizes a CAATAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Medicago truncatula/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
10.
Mol Genet Genomics ; 281(1): 55-66, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987888

RESUMO

The root apex contains meristematic cells that determine root growth and architecture in the soil. Specific transcription factor (TF) genes in this region may integrate endogenous signals and external cues to achieve this. Early changes in transcriptional responses involving TF genes after a salt stress in Medicago truncatula (Mt) roots were analysed using two complementary transcriptomic approaches. Forty-six salt-regulated TF genes were identified using massive quantitative real-time RT-PCR TF profiling in whole roots. In parallel, Mt16K+ microarray analysis revealed 824 genes (including 84 TF sequences) showing significant changes (p < 0.001) in their expression in root apexes after a salt stress. Analysis of salt-stress regulation in root apexes versus whole roots showed that several TF genes have more than 30-fold expression differences including specific members of AP2/EREBP, HD-ZIP, and MYB TF families. Several salt-induced TF genes also respond to other abiotic stresses as osmotic stress, cold and heat, suggesting that they participate in a general stress response. Our work suggests that spatial differences of TF gene regulation by environmental stresses in various root regions may be crucial for the adaptation of their growth to specific soil environments.


Assuntos
Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Genes de Plantas , Medicago truncatula/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Pressão Osmótica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/farmacologia , Estresse Fisiológico
11.
Plant Mol Biol ; 50(4-5): 699-712, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12374301

RESUMO

The proximal region of the high-molecular-weight glutenin promoter of the Dx5 gene (PrHMWG-Dx5) carries an atypical bifactorial endosperm box containing two cis-acting elements, namely a G-box like motif followed by a prolamin-box motif (Pb1). Transient expression assays in maize endosperm indicate that a promoter fragment containing at least the G-box like element is necessary and sufficient for maximal expression of the HMWG-Dx5 promoter. In transformed maize, we have shown that a 89 bp sequence bearing the bifactorial endosperm box behaves like a functional cis-acting unit. Its repetition in tandem confers a strong specific additive effect specifically in endosperm tissue. In contrast, the fusion of the activation sequences 1 (as-1) and 2 (as-2) of the cauliflower mosaic virus (CaMV) 35S promoter with HMWG-Dx5 derived promoter sequences deregulates its activity in transformed maize. By gel mobility shift assays we have demonstrated that the G-box like motif may alternatively bind two protein groups which have the same DNA-binding affinities as the transcription factors of either the Opaque2 (O2) family and/or the ASF-1 family.


Assuntos
Regiões Promotoras Genéticas/genética , Triticum/genética , Zea mays/genética , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glucuronidase/genética , Glucuronidase/metabolismo , Luciferases/genética , Luciferases/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Oligonucleotídeos/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/genética , Sementes/metabolismo
12.
J Biol Chem ; 277(3): 2266-74, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11689574

RESUMO

Fat digestion in humans and some mammals such as dogs requires the successive intervention of two lipases: gastric lipase, which is stable and active despite the highly acidic stomach environment, followed by the classical pancreatic lipase secreted into the duodenum. We previously solved the structure of recombinant human gastric lipase (HGL) at 3.0-A resolution in its closed form; this was the first structure to be described within the mammalian acid lipase family. Here we report on the open structure of the recombinant dog gastric lipase (r-DGL) at 2.7-A resolution in complex with the undecyl-butyl (C11Y4) phosphonate inhibitor. HGL and r-DGL show 85.7% amino acid sequence identity, which makes it relevant to compare the forms from two different species. The open r-DGL structure confirms the previous description of the HGL catalytic triad (Ser(153), His(353), and Asp(324)) with the catalytic serine buried and an oxyanion hole (NH groups of Gln(154) and Leu(67)). In r-DGL, the binding of the C11Y4 phosphonate inhibitor induces part of the cap domain, the lid, to roll over the enzyme surface and to expose a catalytic crevice measuring approximately 20 x 20 x 7 A(3). The C11Y4 phosphonate fits into this crevice, and a molecule of beta-octyl glucoside fills up the crevice. The C11Y4 phosphonate inhibitor and the detergent molecule suggest a possible binding mode for the natural substrates, the triglyceride molecules.


Assuntos
Inibidores Enzimáticos/química , Lipase/química , Organofosfonatos/química , Estômago/enzimologia , Animais , Cristalografia por Raios X , Cães , Lipase/antagonistas & inibidores , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...