Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Diet Suppl ; 18(5): 478-506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32691639

RESUMO

PURPOSE: This study examined whether adding Dichrostachys glomerata (DG; 300 mg/d) to thermogenic supplements with (DG + C) and without (DG) caffeine and other nutrients affects weight loss, changes in body composition, and/or markers of health. METHODS: Sixty-eight participants (female, 54%) were grouped in a double-blind, parallel, stratified random, placebo-controlled manner to supplement their diet with a placebo, DG, or DG + C for 12 weeks while maintaining their normal diet and physical activity. Diet, physical activity, body weight, body composition, anthropometric measures, resting energy expenditure, fasting blood samples, and questionnaires were obtained at 0, 4, 8, and 12 weeks and analyzed using general linear models with repeated measures. Data are reported as mean (±SD) and change from baseline (mean, 95% confidence interval) for weeks 4, 8, and 12, respectively, with p values showing changes from baseline. RESULTS: DG treatment promoted significant but minor reductions in fat mass (-0.56 [-1.02, -0.14], p = 0.01; -0.63 [-1.23, -0.02], p = 0.04; -0.71 [-1.47, 0.09] kg, p = 0.08) and percent body fat (-0.46 [-0.96, -0.04], p = 0.07; -0.63 [-1.16, -0.10], p = 0.02; -0.78 [-1.45, 0.07] %, p = 0.03). There was some evidence that DG + C increased resting energy expenditure, decreased hunger, increased satiety, and improved sleep quality (diminished in DG + C). No other significant effects were observed. CONCLUSIONS: Ingestion of thermogenic supplements containing DG (300 mg/d) with and without caffeine and other nutrients in overweight but otherwise healthy participants who did not alter diet or physical activity promoted clinically insignificant changes in body weight and composition.


Assuntos
Doenças Cardiovasculares , Redução de Peso , Antropometria , Composição Corporal , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Masculino , Termogênese
2.
J Int Soc Sports Nutr ; 16(1): 34, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409363

RESUMO

BACKGROUND: We previously reported that consuming a food bar (FB) containing whey protein and the plant fiber isomalto-oligosaccharides [IMO] had a lower glycemic (GI) but similar insulinemic response as a high GI carbohydrate. Therefore, we hypothesized that ingestion of this FB before, during, and following intense exercise would better maintain glucose homeostasis and performance while hastening recovery in comparison to the common practice of ingesting carbohydrate alone. METHODS: Twelve resistance-trained males participated in an open label, randomized, counterbalanced, crossover trial with a 7-d washout period. Participants consumed a carbohydrate matched dextrose comparitor (CHO) or a FB containing 20 g of whey, 25 g of IMO, and 7 g of fat 30-min before, mid-way, and following intense exercise. Participants performed 11 resistance-exercises (3 sets of 10 repetitions at 70% of 1RM) followed by agility and sprint conditioning drills for time. Participants donated blood to assess catabolic and inflammatory markers, performed isokinetic strength tests, and rated perceptions of muscle soreness, hypoglycemia before, and following exercise and after 48 h of recovery. Data were analyzed using general linear models (GLM) for repeated measures and mean changes from baseline with 95% confidence intervals (CI) with a one-way analysis of variance. Data are reported as mean change from baseline with 95% CI. RESULTS: GLM analysis demonstrated that blood glucose was significantly higher 30-min post-ingestion for CHO (3.1 [2.0, 4.3 mmol/L,] and FB (0.8 [0.2, 1.5, mmol/L, p = 0.001) while the post-exercise ratio of insulin to glucose was greater with FB (CHO 0.04 [0.00, 0.08], FB 0.11 [0.07, 0.15], p = 0.013, η2 = 0.25). GLM analysis revealed no significant interaction effects between treatments in lifting volume of each resistance-exercise or total lifting volume. However, analysis of mean changes from baseline with 95% CI's revealed that leg press lifting volume (CHO -130.79 [- 235.02, - 26.55]; FB -7.94 [- 112.17, 96.30] kg, p = 0.09, η2 = 0.12) and total lifting volume (CHO -198.26 [- 320.1, - 76.4], FB -81.7 [- 203.6, 40.1] kg, p = 0.175, η2 = 0.08) from set 1 to 3 was significantly reduced for CHO, but not for the FB. No significant interaction effects were observed in ratings of muscle soreness. However, mean change analysis revealed that ratings of soreness of the distal vastus medialis significantly increased from baseline with CHO while being unchanged with FB (CHO 1.88 [0.60, 3.17]; FB 0.29 [- 0.99, 1.57] cm, p = 0.083, η2 = 0.13). No significant GLM interaction or mean change analysis effects were seen between treatments in sprint performance, isokinetic strength, markers of catabolism, stress and sex hormones, or inflammatory markers. CONCLUSION: Pilot study results provide some evidence that ingestion of this FB can positively affect glucose homeostasis, help maintain workout performance, and lessen perceptions of muscle soreness. TRIAL REGISTRATION: clinicaltrials.gov, # NCT03704337 . Retrospectively registered 12, July 2018.


Assuntos
Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Treinamento Resistido , Proteínas do Soro do Leite/administração & dosagem , Glicemia , Estudos Cross-Over , Ingestão de Alimentos , Teste de Esforço , Humanos , Insulina/sangue , Contração Isométrica , Masculino , Mialgia , Oligossacarídeos/administração & dosagem , Projetos Piloto , Fenômenos Fisiológicos da Nutrição Esportiva , Adulto Jovem
3.
Nutrients ; 9(12)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244743

RESUMO

In a double-blind, crossover, randomized and placebo-controlled trial; 28 men and women ingested a placebo (PLA), 3 g of creatine nitrate (CNL), and 6 g of creatine nitrate (CNH) for 6 days. Participants repeated the experiment with the alternate supplements after a 7-day washout. Hemodynamic responses to a postural challenge, fasting blood samples, and bench press, leg press, and cycling time trial performance and recovery were assessed. Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM). No significant differences were found among treatments for hemodynamic responses, clinical blood markers or self-reported side effects. After 5 days of supplementation, one repetition maximum (1RM) bench press improved significantly for CNH (mean change, 95% CI; 6.1 [3.5, 8.7] kg) but not PLA (0.7 [-1.6, 3.0] kg or CNL (2.0 [-0.9, 4.9] kg, CNH, p = 0.01). CNH participants also tended to experience an attenuated loss in 1RM strength during the recovery performance tests following supplementation on day 5 (PLA: -9.3 [-13.5, -5.0], CNL: -9.3 [-13.5, -5.1], CNH: -3.9 [-6.6, -1.2] kg, p = 0.07). After 5 days, pre-supplementation 1RM leg press values increased significantly, only with CNH (24.7 [8.8, 40.6] kg, but not PLA (13.9 [-15.7, 43.5] or CNL (14.6 [-0.5, 29.7]). Further, post-supplementation 1RM leg press recovery did not decrease significantly for CNH (-13.3 [-31.9, 5.3], but did for PLA (-30.5 [-53.4, -7.7] and CNL (-29.0 [-49.5, -8.4]). CNL treatment promoted an increase in bench press repetitions at 70% of 1RM during recovery on day 5 (PLA: 0.4 [-0.8, 1.6], CNL: 0.9 [0.35, 1.5], CNH: 0.5 [-0.2, 0.3], p = 0.56), greater leg press endurance prior to supplementation on day 5 (PLA: -0.2 [-1.6, 1.2], CNL: 0.9 [0.2, 1.6], CNH: 0.2 [-0.5, 0.9], p = 0.25) and greater leg press endurance during recovery on day 5 (PLA: -0.03 [-1.2, 1.1], CNL: 1.1 [0.3, 1.9], CNH: 0.4 [-0.4, 1.2], p = 0.23). Cycling time trial performance (4 km) was not affected. Results indicate that creatine nitrate supplementation, up to a 6 g dose, for 6 days, appears to be safe and provide some ergogenic benefit.


Assuntos
Desempenho Atlético , Creatina/administração & dosagem , Suplementos Nutricionais , Nitratos/administração & dosagem , Substâncias para Melhoria do Desempenho/administração & dosagem , Adolescente , Adulto , Animais , Antropometria , Ciclismo , Composição Corporal , Creatina/sangue , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Hemodinâmica , Humanos , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Nitratos/sangue , Substâncias para Melhoria do Desempenho/sangue , Resistência Física , Inquéritos e Questionários , Resultado do Tratamento , Adulto Jovem
4.
Nutrients ; 9(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763003

RESUMO

In a double-blind, randomized and crossover manner, 25 resistance-trained participants ingested a placebo (PLA) beverage containing 12 g of dextrose and a beverage (RTD) containing caffeine (200 mg), ß-alanine (2.1 g), arginine nitrate (1.3 g), niacin (65 mg), folic acid (325 mcg), and Vitamin B12 (45 mcg) for 7-days, separated by a 7-10-day. On day 1 and 6, participants donated a fasting blood sample and completed a side-effects questionnaire (SEQ), hemodynamic challenge test, 1-RM and muscular endurance tests (3 × 10 repetitions at 70% of 1-RM with the last set to failure on the bench press (BP) and leg press (LP)) followed by ingesting the assigned beverage. After 15 min, participants repeated the hemodynamic test, 1-RM tests, and performed a repetition to fatigue (RtF) test at 70% of 1-RM, followed by completing the SEQ. On day 2 and 7, participants donated a fasting blood sample, completed the SEQ, ingested the assigned beverage, rested 30 min, and performed a 4 km cycling time-trial (TT). Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM), adjusted for gender and relative caffeine intake. Data are presented as mean change (95% CI). An overall multivariate time × treatment interaction was observed on strength performance variables (p = 0.01). Acute RTD ingestion better maintained LP 1-RM (PLA: -0.285 (-0.49, -0.08); RTD: 0.23 (-0.50, 0.18) kg/kgFFM, p = 0.30); increased LP RtF (PLA: -2.60 (-6.8, 1.6); RTD: 4.00 (-0.2, 8.2) repetitions, p = 0.031); increased BP lifting volume (PLA: 0.001 (-0.13, 0.16); RTD: 0.03 (0.02, 0.04) kg/kgFFM, p = 0.007); and, increased total lifting volume (PLA: -13.12 (-36.9, 10.5); RTD: 21.06 (-2.7, 44.8) kg/kgFFM, p = 0.046). Short-term RTD ingestion maintained baseline LP 1-RM (PLA: -0.412 (-0.08, -0.07); RTD: 0.16 (-0.50, 0.18) kg/kgFFM, p = 0.30); LP RtF (PLA: 0.12 (-3.0, 3.2); RTD: 3.6 (0.5, 6.7) repetitions, p = 0.116); and, LP lifting volume (PLA: 3.64 (-8.8, 16.1); RTD: 16.25 (3.8, 28.7) kg/kgFFM, p = 0.157) to a greater degree than PLA. No significant differences were observed between treatments in cycling TT performance, hemodynamic assessment, fasting blood panels, or self-reported side effects.


Assuntos
Bebidas , Exercício Físico , Fenômenos Fisiológicos da Nutrição Esportiva , Adulto , Bebidas/análise , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Alimentos Formulados , Humanos , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...