Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611313

RESUMO

The volatile composition of Paulownia Shan tong (Fortunei × Tomentosa) essential oil isolated by steam distillation (yielding 0.013% v/w) from flowers (forestry wastes) was investigated by gas chromatography-mass spectrometry. Thirty-one components were identified, with 3-acetoxy-7, 8-epoxylanostan-11-ol (38.16%), ß-monoolein (14.4%), lycopene, 1,2-dihydro-1-hydroxy- (10.21%), and 9,12-octadecadienoic acid, 2-phenyl-1,3-dioxan-5-yl ester (9.21%) as main compounds. In addition, molecular docking was employed to identify potential protein targets for the 31 quantified essential oil components. Inhibition of these targets is typically associated with antibacterial or antioxidant properties. Molecular docking revealed that six of these components, namely, 13-heptadecyn-1-ol, ascabiol, geranylgeraniol, anethole, and quinol dimethyl ether, outperformed the native ligand (hypoxanthine) of xanthine oxidase in terms of theoretical binding affinity, therefore implying a significant in silico inhibitory potential against xanthine oxidase. These findings suggest that the essential oil extracted from Paulownia Shan tong flowers could be valuable for developing protein-targeted antioxidant compounds with applications in the food, pharmaceutical, and cosmetic industries.

2.
Metabolites ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233650

RESUMO

Metabolomic analysis methods were employed to determine biomarkers for various chronic kidney diseases (CKDs). Modern analytical methods were developed and applied successfully to find a specific metabolomic profile in urine samples from CKD and Balkan endemic nephropathy (BEN) patients. The aim was to explore a specific metabolomic profile defined by feasible/easy-to-identify molecular markers. Urine samples were collected from patients with CKDs and BEN, and from healthy subjects from endemic and nonendemic areas in Romania. Metabolomic analysis of urine samples, extracted by the liquid-liquid extraction (LLE) method, was performed by gas chromatography-mass spectrometry (GC-MS). The statistical exploration of the results was performed through a principal component analysis (PCA) evaluation. Urine samples were statistically analyzed using a classification based on six types of metabolites. Most urinary metabolites are distributed in the center of a loading plot, meaning that these compounds do not represent significant markers for BEN. One of the most frequent and higher-concentration urinary metabolites in BEN patients was p-Cresol, a phenolic compound that implies a severe injury of the renal filtration function. The presence of p-Cresol was associated with protein-bound uremic toxins, which have specific functional groups such as indole and phenyl. In prospective studies for future investigation, prevention, and disease treatment, we suggest a larger sample size, sample extraction using other methods, and analysis using other chromatography techniques coupled with mass spectrometry, which can generate a more significant data set for statistical analysis.

3.
Antioxidants (Basel) ; 11(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552681

RESUMO

The study was designed to analyze and evaluate the antioxidant and antibacterial properties of the essential oils of Thymus pulegioides L. grown in Western Romania. Thymus pulegioides L. essential oil (TPEO) was extracted by steam distillation (0.71% v/w) using a Craveiro-type apparatus. GC-MS investigation of the TPEO identified 39 different compounds, representing 98.46% of total oil. Findings revealed that thymol (22.89%) is the main compound of TPEO, followed by para-cymene (14.57%), thymol methyl ether (11.19%), isothymol methyl ether (10.45%), and beta-bisabolene (9.53%). The oil exhibits good antibacterial effects; C. parapsilosis, C. albicans, S. pyogenes, and S. aureus were the most sensitive strains. The antioxidant activity of TPEO was evaluated by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium] (ABTS) radical scavenging assay, and beta-carotene/linoleic acid bleaching testing. The antioxidative data recorded reveal, for the first time, that TPEO inhibits primary and secondary oxidation products, in some particular conditions, better than butylated hydroxyanisole (BHA) with significant statistical difference (p < 0.05). Moreover, TPEO antioxidant capabilities in DPPH and ABTS assays outperformed alpha-tocopherol (p < 0.001) and delta-tocopherol (p < 0.001). Molecular docking analysis revealed that one potential target correlated with the TPEO antimicrobial activity was d-alanine-d-alanine ligase (DDl). The best scoring ligand, linalyl anthranilate, shared highly similar binding patterns with the DDl native inhibitor. Furthermore, molecular docking analysis also showed that the main constituents of TPEO are good candidates for xanthine oxidase and lipoxygenase inhibition, making the essential oil a valuable source for protein-targeted antioxidant compounds. Consequently, TPEO may represent a new potential source of antioxidant and antibacterial agents with applicability in the food and pharmaceutic industries.

4.
Antioxidants (Basel) ; 11(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421447

RESUMO

Curcuma is one of the most famous medicinal and tropical aromatic plants. Its health benefits have been appreciated and exploited in traditional Asian medicine since ancient times. Various studies have investigated its complex chemical composition and demonstrated the remarkable therapeutic properties of curcuma's phytoconstituents. Oxidative stress is a decisive driving factor triggering numerous pathologies (neurodegenerative, psychiatric and cardiovascular diseases; diabetes; tumors, etc.). Numerous recent studies have focused on the use of natural compounds and nanomaterials as innovative molecular targeting agents as effective therapeutic strategies. In this study, we report, for the first time, the development of a simple target phytocarrier system that capitalizes on the bioactive properties of curcuma and AgNPs. The complete metabolic profile of curcuma was determined based on gas chromatography-mass spectrometry (GC-MS) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). A total of 80 metabolites were identified under mass spectra (MS)-positive mode from 10 secondary metabolite categories: terpenoids, amino acids, diarylheptanoids, flavonoids, phenolic acids, steroids, fatty acids, coumarins, alkaloids and miscellaneous. In addition, the biological activity of each class of metabolites was discussed. A comprehensive characterization (FT-IR, UV-Vis, DLS, SEM, TEM, EDS, zeta potential and XRD) was performed to study the morphostructural properties of this new phytocarrier system. Antioxidant activity of the new phytocarrier system was evaluated using a combination of in vitro methods (total phenolic assay, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and cyclic voltammetric method (Trolox equivalent antioxidant capacity (TEAC) electrochemical assay)). Antioxidants assays showed that the phytocarrier system exhibits superior antioxidant properties to those of its components, i.e., curcuma or citrate-coated-AgNPs. These data confirm the potential to enhance relevant theoretical knowledge in the area of innovative antioxidant agents, with potential application in neurodegenerative therapeutic strategies.

5.
Chemosphere ; 297: 134111, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35231474

RESUMO

Described in the 1950s, Balkan Endemic Nephropathy (BEN) has been recognized as a chronic kidney disease (CKD) with clinical peculiarities and multiple etiological factors. Environmental contaminants - aromatic compounds, mycotoxins and phytotoxins like aristolochic acids (AAs) - polluting food and drinking water sources, were incriminated in BEN, due to their nephrotoxic and carcinogenic properties. The implication of AAs in BEN etiology is currently a highly debated topic due to the fact that they are found within the Aristolochiaceae plants family, used around the globe as traditional medicine and they were also incriminated in Aristolochic Acid Nephropathy (AAN). Exposure pathways have been investigated, but it is unclear to what extent AAs are acting alone or in synergy with other cofactors (environmental, genetics) in triggering kidney damage. Experimental studies strengthen the hypothesis that AAI, the most studied compound in the AAs class, is a significant environmental contaminant and a most important causative factor of BEN. The aim of this review is to compile information about the natural exposure pathways to AAI, via traditional medicinal plants, soil, crop plants, water, food, air. Data that either supports or contradicts the AAI theory concerning BEN etiology was consolidated and available solutions to reduce human exposure were discussed. Because AAI is a phytotoxin with physicochemical properties that allow its transportation in environmental matrices from different types of areas (endemic, nonendemic), and induce CKDs (BEN, AAN) and urinary cancers through bioaccumulation, this review aims to shed a new light on this compound as a biogenic emerging pollutant.


Assuntos
Ácidos Aristolóquicos , Nefropatia dos Bálcãs , Insuficiência Renal Crônica , Ácidos Aristolóquicos/toxicidade , Nefropatia dos Bálcãs/induzido quimicamente , Nefropatia dos Bálcãs/epidemiologia , Saúde Ambiental , Feminino , Humanos , Masculino , Insuficiência Renal Crônica/induzido quimicamente
6.
Antioxidants (Basel) ; 10(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356313

RESUMO

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC-MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of ß-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 µg/mL and 14.015 ± 0.027 µg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the ß-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated ß-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.

7.
Foods ; 10(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918674

RESUMO

This study was conducted to identify the volatile compounds of Mentha × smithiana essential oil (MSEO) and evaluate its antioxidant and antibacterial potential. The essential oil (EO) content was assessed by gas chromatography-mass spectrometry (GC-MS). Carvone (55.71%), limonene (18.83%), trans-carveol (3.54%), cis-carveol (2.72%), beta-bourbonene (1.94%), and caryophyllene oxide (1.59%) were the main identified compounds. The MSEO displayed broad-spectrum antibacterial effects and was also found to be the most effective antifungal agent against Candida albicans and Candida parapsilosis. The antioxidant activity of MSEO was tested against cold-pressed sunflower oil by peroxide, thiobarbituric acid, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), and ß-carotene/linoleic acid bleaching methods. The EO showed strong antioxidant effects as reflected by IC50 values of 0.83 ± 0.01 mg/mL and relative antioxidative activity of 87.32 ± 0.03% in DPPH and ß-carotene/linoleic acid bleaching assays, respectively. Moreover, in the first 8 days of the incubation period, the inhibition of primary and secondary oxidation compounds induced by the MSEO (0.3 mg/mL) was significantly stronger (p < 0.05) than that of butylated hydroxyanisole. In silico molecular docking studies were conducted to highlight the underlying antimicrobial mechanism as well as the in vitro antioxidant potential. Recorded data showed that the antimicrobial activity of MSEO compounds could be exerted through the D-Alanine-d-alanine ligase (DDl) inhibition and may be attributed to a cumulative effect. The most active compounds are minor components of the MSEO. Docking results also revealed that several mint EO components could exert their in vitro antioxidant activity by employing xanthine oxidase inhibition. Consequently, MSEO could be a new natural source of antioxidants and antiseptics, with potential applications in the food and pharmaceutical industries as an alternative to the utilization of synthetic additives.

8.
Environ Geochem Health ; 43(10): 4163-4178, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33796971

RESUMO

Aristolochic acid I (AAI) is a potent nephrotoxic and carcinogenic compound produced by plants of the Aristolochiaceae family and thoroughly investigated as a main culprit in the etiology of Balkan endemic nephropathy (BEN). So far, the AAI exposure was demonstrated to occur through the consumption of Aristolochia clematitis plants as traditional remedies, and through the contamination of the surrounding environment in endemic areas: soil, food and water contamination. Our study investigated for the first time the level of AAI contamination in 141 soil and vegetable samples from two cultivated gardens in non-endemic areas, A. clematitis being present in only one of the gardens. We developed and validated a simple and sensitive ultra-high-performance liquid chromatography-ion trap mass spectrometry method for qualitative and quantitative AAI analysis. The results confirmed the presence of AAI at nanogram levels in soil and vegetable samples collected from the non-endemic garden, where A. clematitis grows. These findings provide additional evidence that the presence of A. clematitis can cause food crops and soil contamination and unveil the pathway through which AAI could move from A. clematitis to other plant species via a common matrix: the soil. Another issue regarding the presence of AAI, in a non-endemic BEN area from Romania, could underlie a more widespread environmental exposure to AAI and explain certain BEN-like cases in areas where BEN has not been initially described.


Assuntos
Aristolochia , Ácidos Aristolóquicos , Nefropatia dos Bálcãs , Ácidos Aristolóquicos/toxicidade , Nefropatia dos Bálcãs/induzido quimicamente , Produtos Agrícolas
9.
Molecules ; 25(4)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079080

RESUMO

In the last decade, there has been growing interest in the food industry in replacing synthetic chemicals with natural products with bioactive properties. This study's aims were to determine the chemical composition and the antioxidant properties of the essential oil of Pastianica sylvestris. The essential oil was isolated with a yield of 0.41% (w/v) by steam distillation from the dried seeds and subsequently analysed by GC-MS. Octyl acetate (78.49%) and octyl hexanoate (6.68%) were the main components. The essential oil exhibited an excellent activity for the inhibition of primary and secondary oxidation products for cold-pressed sunflower oil comparable with butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), which were evaluated using peroxide and thiobarbituric acid values. The antioxidant activity of the essential oil was additionally validated using DPPH radical scavenging (0.0016 ± 0.0885 mg/mL), and ß-carotene-linoleic acid bleaching assays. Also, the amounts of total phenol components (0.0053 ± 0.0023 mg GAE/g) were determined.


Assuntos
Acetatos/química , Antioxidantes/química , Óleos Voláteis/química , Pastinaca/química , Sementes/química , Acetatos/isolamento & purificação , Antioxidantes/isolamento & purificação , Bioensaio , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Hidroxianisol Butilado/química , Hidroxianisol Butilado/isolamento & purificação , Hidroxitolueno Butilado/química , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico/química , Óleos Voláteis/isolamento & purificação , Fenóis/química , Picratos/antagonistas & inibidores , Picratos/química , Extratos Vegetais/química , Óleo de Girassol/química , Tiobarbitúricos/química , beta Caroteno/química
10.
Food Chem ; 303: 125419, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470276

RESUMO

ß-Cyclodextrin- and 2-hydroxypropyl-ß-cyclodextrin/Danube common nase (Chondrostoma nasus L.) oil complexes (ß-CD- and HP-ß-CD/CNO) have been obtained for the first time. The fatty acid (FA) profile of the CNO indicates an important content of polyunsaturated fatty acids, the most important being eicosapentaenoic acid (EPA, 6.3%) and docosahexaenoic acid (DHA, 1.6%), both ω-3 FAs. The complexes have been obtained by kneading method. The moisture content and successful of molecular encapsulation have been evaluated by thermal and spectroscopic techniques. Thermogravimetry and differential scanning calorimetry analyses reveals that the moisture content of CD/CNO complexes significantly decreased, compared to starting CDs. On the other hand, the crystallinity index was for the first time determined for such type of complexes, the ß-CD/CNO complex having values of 43.9(±18.3)%, according to X-ray diffractometry. FA profile and CD/CNO characteristics sustain the use of these ω-3 based complexes for food supplements or functional food products, but further studies are needed.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Óleos de Peixe/química , beta-Ciclodextrinas/química , Animais , Varredura Diferencial de Calorimetria , Cyprinidae , Solubilidade , Difração de Raios X
11.
J Nephrol ; 33(1): 91-100, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31222646

RESUMO

A severe, chronic and irreversible kidney disease affecting discrete rural populations in the Balkan Peninsula countries, Balkan endemic nephropathy (BEN) has been a scientific puzzle for more than half a century. Many environmental and other factors have been suggested as the primary cause and recent significant findings have linked BEN to aristolochic acids, phytotoxins derived from the plant Aristolochia clematitis, found in high density in the endemic areas. However, given that the incidence of BEN is less than 10% in affected villages, and it tends to have a family aggregation, as yet unidentified genetic factors may also play a role. To further explore this possibility, a pilot study was initiated to investigate the DNA methylation of CYP1A1, CYP1A2, NAT1, NQO1 and GSTT1 in blood samples from a group of Romanian BEN patients, compared to healthy controls and non-BEN chronic kidney disease (CKD) subjects. Our study revealed a more pronounced hypomethylation pattern in BEN and non-BEN CKD groups, compared to the healthy control group at specific CpGs across all five genes interrogated. Average methylation across the five regions investigated indicated significant differences only at GSTT1, in both BEN patients (p = 0.028) and non-BEN disease subjects (p = 0.015), relative to healthy individuals. Since GSTT1 active genotype appears to be a common feature of Serbian and Romanian BEN patients, GSTT1 epigenetic variation and increased gene activity could act as a predisposing (co)factor in BEN populations from the affected countries. BEN and non-BEN CKD groups show similar methylation patterns with exception of GSTT1 CpG8 (p = 0.046).


Assuntos
Arilamina N-Acetiltransferase/genética , Nefropatia dos Bálcãs/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Glutationa Transferase/genética , Isoenzimas/genética , NAD(P)H Desidrogenase (Quinona)/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Metilação , Pessoa de Meia-Idade , Projetos Piloto , Insuficiência Renal Crônica/genética , Romênia , Xenobióticos/metabolismo
12.
PLoS One ; 14(11): e0225474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31756198

RESUMO

The goal of the present study was the evaluation of the fatty acid (FA) profile of lipid fraction from dry common beans (Phaseolus vulgaris L.) (CBO) harvested from North-East (NE) and South-West (SW) of Romania and to protect against thermal and oxidative degradation of the contained omega-3 and omega-6 polyunsaturated fatty acid (PUFA) glycerides by ß-cyclodextrin (ß-CD) nanoencapsulation, using kneading method. The most abundant FAs in the CBO samples were PUFAs, according to gas chromatography-mass spectrometry (GC-MS) analysis. Linoleic acid (methyl ester) was the main constituent, having relative concentrations of 43.4 (±1.95) % and 35.23 (±0.68) % for the lipid fractions separated from the common beans harvested from the NE and SW of Romania, respectively. Higher relative concentrations were obtained for the omega-3 α-linolenic acid methyl ester at values of 13.13 (±0.59) % and 15.72 (±0.30) % for NE and SW Romanian samples, respectively. The omega-3/omega-6 ratio consistently exceeds the lower limit value of 0.2, from where the PUFA glyceride mixture is valuable for the human health. This value was 0.32 (±0.02) for the NE samples and significantly higher for the CBO-SW samples, 0.51 (±0.01). These highly hydrophobic mixtures especially consisting of PUFA triglycerides provide ß-CD complexes having higher thermal and oxidative stability. Kneading method allowed obtaining ß-CD/CBO powder-like complexes with higher recovery yields of >70%. Thermal analyses of complexes revealed a lower content of hydration water (3.3-5.8% up to 110°C in thermogravimetry (TG) analysis and 154-347 J/g endothermal effect in differential scanning calorimetry (DSC) analysis) in comparison with the ß-CD hydrate (12.1% and 479.5-480 J/g, respectively). These findings support the molecular inclusion process of FA moieties into the ß-CD cavity. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analysis reveals the formation of the ß-CD/CBO inclusion complexes by restricting the vibration and bending of some bonds from the host and guest molecules. Moreover, powder X-ray diffractometry (PXRD) analysis confirm the formation of the host-guest complexes by modifying the diffractograms for ß-CD/CBO complexes in comparison with the ß-CD and ß-CD + CBO physical mixtures. A significant reduction of the level of crystallinity from 93.3 (±5.3) % for ß-CD to 60-60.9% for the corresponding ß-CD/CBO complexes have been determined. The encapsulation efficiency (EE), the profile of FAs, as well as the controlled release of the encapsulated oil have also been evaluated. The EE was >40% in all cases, the highest value being obtained for ß-CD/CBO-SW complex. The SFA content increased, while the unsaturated FA glycerides had lower relative concentrations in the encapsulated CBO samples. It can be emphasized that the main omega-3 FA (namely α-linolenic acid glycerides) had close concentrations in the encapsulated and raw CBOs (13.13 (±0.59) % and 14.04 (±1.54) % for non-encapsulated and encapsulated CBO-NE samples, 15.72 (±0.30) % and 12.41 (±1.95) % for the corresponding CBO-SW samples, respectively). The overall unsaturated FA content significantly decreased after complexation (from 19.03-19.16% for the raw CBOs to 17.3-17.7% for encapsulated oils in the case of MUFAs, and from 55.7-58.8% to 35.13-43.36% for PUFAs). On the other hand, the omega-3/omega-6 ratio increased by ß-CD nanoencapsulation to 0.51 (±0.07) and 0.76 (0.26) for ß-CD/CBO-NE and ß-CD/CBO-SW complexes, respectively. As a conclusion, the lipid fractions of the Romanian common beans are good candidates for ß-CD complexation and they can be protected against thermal and oxidative degradation in common beans based food products such as functional foods or food supplements using natural CDs.


Assuntos
Ácidos Graxos/metabolismo , Phaseolus/metabolismo , Óleos de Plantas/química , beta-Ciclodextrinas/química , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/química , Ácidos Graxos Ômega-6/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico/análise , Ácido Linoleico/metabolismo , Romênia , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
13.
Chem Biodivers ; 16(11): e1900406, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31568671

RESUMO

An understanding of the fate of organic compounds originating from plants in soil is crucial for determining their persistence and concentrations in the environment. Aristolochic acids are believed to be the causal agents that induce Balkan endemic nephropathy by food contamination through soil adsorption of humic acids, major components of soil. Aristolochic acids are active chemicals in Aristolochia plant species found in endemic villages. In this article, molecular structure interactions between 18 structures of aristolochic acids with an inserted humic acid structure were studied. These structures were optimized in vacuo and by periodic box simulation with water solvate using the computational molecular mechanics MM+ method with HyperChem software. The QSPR models were used for correlation of the relationship between the hydrophobicity values of 18 AA structures coupled with a HA structure by MM+ and QSAR+ properties. Computational hydrophobicity values were considered dependent variables and were related to the structural features obtained by molecular and quantum mechanics calculations by multiple linear regression approaches. The obtained model was validated, and the results indicated differing hydrophobicity between the MM+ and QSAR+ properties.


Assuntos
Ácidos Aristolóquicos/química , Nefropatia dos Bálcãs/induzido quimicamente , Contaminação de Alimentos/análise , Substâncias Húmicas/análise , Simulação de Dinâmica Molecular , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
14.
Environ Geochem Health ; 40(4): 1437-1448, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29288399

RESUMO

Aristolochic acids (AAs) are carcinogenic and nephrotoxic plant alkaloids present in Aristolochia species, used in traditional medicine. Recent biomolecular and environmental studies have incriminated these toxins as an etiological agent in Balkan endemic nephropathy (BEN), a severe kidney disease occurring in the Balkan Peninsula. The questions on how the susceptible populations are exposed to these toxins have not yet been clearly answered. Exposure to AAs through the food chain, and environmental pollution (soil/dust), could provide an explanation for the presence of BEN in the countries where no folkloric use of the plant has been documented (Bulgaria, Croatia). Additional exposure pathways are likely to occur, and we have shown previously that AAs can contaminate crop plants through absorption from soil, under controlled laboratory environment. Here, we attempt to provide additional support to this potential exposure pathway, by revealing the presence of AAI in soil and soil organic matter samples collected from BEN and non-BEN areas. The samples were processed in order to be analyzed by high-pressure liquid chromatography, and ion trap mass spectrometry. Our results showed the presence of AAI in small concentrations, both in BEN and non-BEN soils, especially where Aristolochia plants and seeds were present.


Assuntos
Ácidos Aristolóquicos/toxicidade , Nefropatia dos Bálcãs/induzido quimicamente , Exposição Ambiental , Substâncias Húmicas , Poluentes do Solo/toxicidade , Ácidos Aristolóquicos/análise , Cromatografia Líquida de Alta Pressão , Produtos Agrícolas , Humanos , Espectrometria de Massas , Estações do Ano , Poluentes do Solo/análise , Espectrofotometria Ultravioleta
15.
Food Chem ; 236: 49-58, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624089

RESUMO

The moisture content of ß-cyclodextrin/Danube fish oils complexes (common barbel, Pontic shad, European wels catfish, common bleak) was evaluated by thermal methods. Saturated and monounsaturated fatty acids were the most concentrated in fish oils (25.3-30.8% and 36.1-45.0%). ω-3 And ω-6 fatty acids were identified in low concentrations of 2.8-12.1% and 4.1-7.1%. The moisture content was significantly lowered after ß-CD complexation, as revealed by thermogravimetric (TG) analysis (13.3% for ß-CD, 2.5-6.5% for complexes). These results are consistent with the differential scanning calorimetry (DSC) data for the peaks corresponding to dissociation of water (calorimetric effect of 536Jg-1 for ß-cyclodextrin and 304-422.5Jg-1 for complexes). Furthermore, both TG and DSC results support the formation of inclusion complexes. This is the first study on the nanoencapsulation of Danube fish oils in ß-cyclodextrin.


Assuntos
Cyprinidae , Óleos de Peixe/química , beta-Ciclodextrinas/química , Animais , Peixes-Gato , Rios
16.
Data Brief ; 7: 1199-203, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27408922

RESUMO

Here we present additional data on the expression of lipoxygenases -5 and -12 in the normal and acetaminophen-damaged liver, which are associated with our manuscript recently published in Chemico-Biological Interactions on lipid metabolism and eicosanoid signaling pathways involved in acetaminophen-induced liver damage in a mouse model (http://dx.doi.org/10.1016/j.cbi.2015.10.019 [1]). It has been demonstrated that the expression of lipoxygenase-5 and leukotriene formation are increased in the livers of rats with carbon tetrachloride (CCl4)-induced cirrhosis (http://dx.doi.org/10.1053/gast.2000.17831 [2]). In addition, the lipoxygenase-12 is known to be expressed in the resident macrophage population of the liver (http://dx.doi.org/10.1016/S0014-5793(99)00396-8 [3]). Mice were injected with acetaminophen, and at 48 h their livers were processed for immunohistochemistry with anti-mouse lipoxygenase-5 and -12 antibodies. At the same time point, the RNA was also extracted from the liver to assess the expression of lipoxygenase-5 and -12 genes via qPCR analysis. Our results show that lipoxygenase-5 expression, but not that of lipoxygenase-12, changes significantly in the acetominophen-damaged liver.

17.
Histochem Cell Biol ; 146(2): 153-65, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27085705

RESUMO

The development of thymocytes and generation of mature T cells is a complex process that requires spatio-temporal interactions of thymocytes with the other cells of the thymus microenvironment. Recently, mesenchymal stromal cells were isolated from the neonatal human thymus and differentiated into chondrogenic, osteogenic, and adipogenic lineages, just like their bone marrow counterparts. However, their function in thymocyte homeostasis is unknown. In our autologous co-cultures of rat mesenchymal stromal cells and thymocytes, the stromal cells preserve the viability of cultured thymocytes and stimulate the development of CD4-CD8- double-negative and the maturation of mainly CD4+ single-positive thymocytes. Thymocytes also influence the stemness of bone marrow mesenchymal stromal cells, as their expression of CD44, a marker associated with cellular proliferation and migration, is reduced in co-cultures. Mesenchymal stromal cells' influence on thymocyte development requires direct physical contact between the two cells and is not mediated by a soluble factor. When the two types of cells were physically separated, the stimulative effects of mesenchymal stromal cells on thymocytes did not occur. Electron microscopy confirmed the close contact between the membranes of thymocytes and mesenchymal stromal cells. Our experiments suggest that membrane exchanges could occur between mesenchymal stromal cells and thymocytes, such as the transfer of CD44 from mesenchymal stromal cells to the thymocytes, but its functional significance for thymocytes development remains to be established. These results suggest that mesenchymal stromal cells could normally be a part of the in vivo thymic microenvironment and form a niche that could sustain and guide the development of thymocytes.


Assuntos
Adesão Celular , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Timócitos/citologia , Animais , Sobrevivência Celular , Técnicas de Cocultura , Feminino , Citometria de Fluxo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Ratos , Ratos Sprague-Dawley , Timócitos/metabolismo
18.
Beilstein J Org Chem ; 12: 179-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977177

RESUMO

The thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) as well as its ß-cyclodextrin (ß-CD) complexation ability has been verified for the first time. The main omega-3 fatty acids, EPA and DHA, were significantly degraded, even at 50 °C. Their relative concentrations decrease from 6.1% for EPA and 4.1% for DHA to 1.7% and 1.5% after degradation at 150 °C, respectively. On the other hand, the relative concentrations of monounsaturated and saturated fatty acids remained constant or slightly increased by a few percent after degradation (e.g., from 10.7% to 12.9% for palmitic acid). Co-crystallization of ASO with ß-CD at a host-guest ratio of 1:1 and 3:1 from an ethanol-water mixture and kneading methods has been used for the preparation of ß-CD/ASO complexes. The analysis of the complexes by thermogravimetry, differential scanning calorimetry (DSC), and Karl Fischer titration (KFT) as well as the decrease of the "strongly-retained" water content confirm the formation of the inclusion compound. Furthermore, the DSC parameters correlate well with the KFT kinetic data for ß-CD/ASO complexes.

19.
J Cell Physiol ; 231(4): 863-75, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26332160

RESUMO

Adult bone marrow mesenchymal stromal cells (BMSCs) can easily be differentiated into a variety of cells. In vivo transplantation of BMSCs-differentiated cells has had limited success, suggesting that these cells may not be fully compatible with the cells they are intended to replace in vivo. We investigated the structural and functional features of BMSCs-derived adipocytes as compared with adipocytes from adipose tissue, and the structure and functionality of lipid vesicles formed during BMSCs differentiation to adipocytes. Gas chromatography-mass spectrometry showed fatty acid composition of BMSCs-derived adipocytes and adipocytes from the adipose tissue to be very different, as is the lipid rafts composition, caveolin-1 expression, caveolae distribution in their membranes, and the pattern of expression of fatty acid elongases. Confocal microscopy confirmed the absence from BMSCs-derived adipocytes of markers of lipid droplets. BMSCs-derived adipocytes cannot convert deuterated glucose into deuterated species of fatty acids and cannot uptake the deuterated fatty acid-bovine serum albumin complexes from the culture medium, suggesting that intra-cellular accumulation of lipids does not occur by lipogenesis. We noted that BMSCs differentiation to adipocytes is accompanied by an increase in autophagy. Autophagic vesicles accumulate in the cytoplasm of BMSCs-derived adipocytes and their size and distribution resembles that of Nile Red-stained lipid vesicles. Stimulation of autophagy in BMSCs triggers the intra-cellular accumulation of lipids, while inhibition of autophagy prevents this accumulation. In conclusion, differentiation of BMSCs-derived adipocytes leads to intra-cellular accumulation of autophagic vesicles rather than functional lipid droplets, suggesting that these cells are not authentic adipocytes. J. Cell. Physiol. 231: 863-875, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Adipócitos/citologia , Autofagia , Diferenciação Celular , Vesículas Citoplasmáticas/metabolismo , Gotículas Lipídicas/metabolismo , Células-Tronco Mesenquimais/citologia , Acetiltransferases/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Cavéolas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Deutério/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Lipogênese , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Ratos Sprague-Dawley
20.
Chem Biol Interact ; 242: 335-44, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26522476

RESUMO

Acetaminophen is a commonly used drug that induces serious hepatotoxicity when overdosed, leading to increased levels of serum aminotransferases. However, little knowledge exists linking acetaminophen to liver free fatty acids and the eicosanoid-mediated signaling pathway. To this end, adult NMRI mice injected with a dose of 400 mg/kg acetaminophen were monitored for one week post-treatment. Consistent changes were observed in serum transaminases, profile of hepatic free fatty acids, expression of cyclooxygenase, elongase, lipogenesis, and lipolysis genes; as well as in expression patterns of cyclooxygenase-1 and -2 in the liver. Both linoleic acid and arachidonic acid--substrates in eicosanoid biosynthesis--were significantly influenced by overdose, and the latter peaked first among the free fatty acids examined here. There was a close similarity between the temporal dynamics of linoleic acid and aspartate aminotransferases. Moreover, serum transaminases were reduced by cyclooxygenase-2 inhibitors, but not by cyclooxygenase-1 inhibitors. Our results hence attest to the hazard of acetaminophen overdose on the temporal homeostasis of hepatic concentrations of free fatty acids and expression of key genes underlying liver lipid metabolism. There is also evidence for activation of a cyclooxygenase-mediated signaling pathway, especially the cyclooxygenase 2-prostanoid pathway, during acetaminophen-induced liver injury. Therefore, the results of the present study should provide valuable information to a wide audience, working to understand the health hazard of this drug and the implications of the eicosanoid signaling pathway in liver pathophysiology.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Eicosanoides/metabolismo , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...