Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(2): e12601, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816298

RESUMO

Pseudomonas aeruginosa is an ubiquitous and opportunistic bacteria found in water, soil, plants, and immunocompromised humans. Cystic fibrosis (CF) patients are the most vulnerable population to lung colonization by these bacteria. Upon infection, choline and succinate are released from the CF lungs and are catabolized by P. aeruginosa. The bacteria accumulate inorganic polyphosphates, rather than succinate, when choline is catabolized, producing physiological and morphological changes leading to ineradicable infection. Thus, we sought to quantify the enzymes responsible for polyphosphate accumulation and to determine how choline catabolism affects energy flow and storage. Subcellular fractions showed that exo-polyphosphate phosphatase (PPX) activity resides mainly in the periplasm, and three isoenzymes of 24, 70, and 200 KD were found. The PPX activity in the periplasm of bacteria grown with choline was inhibited in an anti-competitive manner from Km 0.5 to 1 µM, and their Vmax increased from 50 to 100 nmol PO 4 ≡ /min/g of protein in succinate medium. Since PPX inhibition by choline did not explain the 3.8-fold increase in polyphosphates, we quantified the polyphosphate kinase activity, and its significant 2.4-fold increase was consistent with the accumulation. Furthermore, intracellular ATP concentration directly correlated with the energetic yield of the carbon source and was significantly higher for succinate, suggesting that the restriction of energy caused by choline catabolism may induce morphological and physiological changes to the swarm form thus facilitating their migration and tissue colonization.

2.
EC Pulmonol Respir Med ; 8(12)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116482

RESUMO

Cigarette smoke initiates an inflammatory response that has aftermath long after quitting. We segregated former smokers, according to their lung function and their co-founding diseases, in 3 groups: Cancer, Emphysema and COPD. Then we searched for outlier genes in intersections of Venn diagrams where we identified 6 subsets and 23 genes that may be responsible for disease outcome. Genes expressed in the cancer patients with or without emphysema (PPA subset) were BHLH, FPRL2, CD49D, DEADH, NRs4A3, MBLL, GNS, BE675435, ISGF-3, and FLJ23462. Patients with emphysema as co-founding disease, with or without cancer (APP), had only ANXA2 in common. Genes expressed only in non-cancer patients (AAP subset) of COPD group were IL-1A, SOX13, RPP38; TBXA2R, NPEPL1, CFLAR, TFEB, PRKCBP1, IGF1R, DDX11, and KCNAB1. HIV-1Rev was the gene expressed in cancer patients with emphysema (APA subset). Then, we also looked at out-layers genes significantly expressed in all patients (PPP subset with 5066 genes), the down-regulated in Emphysema were MMP9, PLUNC, CEACAM5, and NR4A1 while the up-regulated were F2R, COL15A1, PDE4C, and BGN. We chose genes and checked them at the protein level on immune cells, this showed that neutrophils from Cancer group had increased expression of CD49d, and their total number was also increased in bronchial-alveolar lavage (154%). Macrophages in the lung of patients with emphysema were associated with a significant increase of adhesion molecule CD58 and to significant CD95 decrease, indicating they do not die. Besides, macrophages downregulated MMP9 in the lung compared to blood macrophages. Overall, we find that cancer progression requires a stickier and greater number of neutrophils in the lung while emphysema requires stickier and longevous macrophages to lead matrix destruction, and together with higher expression of SOX13 and RPP38, may promote autoimmunity. We also identified two genes, ANXA2 and HIV1-rev, that may be a pivot between cancer and emphysema outcome of inflammation.

3.
Curr Respir Med Rev ; 12(2): 167-174, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29386986

RESUMO

BACKGROUND: Although exacerbations of chronic obstructive pulmonary disease produced by Pseudomonas aeruginosa infections are a major cause of death, the molecular mechanism that produces them is not well known. Here we focused on the energetic basis of dyspnoea, hypercapnia and acidosis symptoms. METHODS AND FINDINGS: We used an in vivo exacerbation model exposing mice to cigarette smoke and LPS, to mimic emphysema and infections, and choline challenges to trigger exacerbations, that showed 31% increased in the airway resistance for naïve mice and 250% for smoke/LPS treatment. Tissue resistance was increased 32%, in naïve mice, and 169% for smoke/LPS treatment. A decreased tissue elastance, was confirmed by decreased collagen content and increased alveoli chord length. Consequently, the O2 demanded was 260% greater for smoke/LPS treated mice, to provide the energy required to pump the same volume of air then for naïve mice. The extra CO2 produced per ml of air pumped caused hypercapnia and acidosis by 4% decrease in pH.In addition, the bacteria grown with choline had a decrease of 67% in phosphate, 23% ATP and 85% phospholipids with an increase of 57% in polyphosphates, 50% carbohydrates, 100% LPS, consuming 45% less energy relative to the bacteria grown with succinate. CONCLUSION: choline, released by P. aeruginosa, triggers exacerbation symptoms by increasing lung resistance, O2 consumption and producing more pCO2 in blood with dyspnea, hypercapnia and acidosis. The energetic shift of decreased O2 bacterial demand and increased lung demand benefits the infection, thus restoring the energetic balance on the host will favor P. aeruginosa eradication.

4.
PLoS One ; 6(5): e18785, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21573156

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease and emphysema develops in 15% of ex-smokers despite sustained quitting, while 10% are free of emphysema or severe lung obstruction. The cause of the incapacity of the immune system to clear the inflammation in the first group remains unclear. METHODS AND FINDINGS: We searched genes that were protecting ex-smokers without emphysema, using microarrays on portions of human lungs surgically removed; we found that loss of lung function in patients with chronic obstructive pulmonary disease and emphysema was associated with a lower expression of CD46 and verified this finding by qRT-PCR and flow cytometry. Also, there was a significant association among decreased CD46(+) cells with decreased CD4(+)T cells, apoptosis mediator CD95 and increased CD8(+)T cells that were protecting patients without emphysema or severe chronic obstructive pulmonary disease. CD46 not only regulates the production of T regulatory cells, which suppresses CD8(+)T cell proliferation, but also the complement cascade by degradation of C3b. These results were replicated in the murine smoking model, which showed increased C5a (produced by C3b) that suppressed IL12 mediated bias to T helper 1 cells and elastin co-precipitation with C3b, suggesting that elastin could be presented as an antigen. Thus, using ELISA from elastin peptides, we verified that 43% of the patients with severe early onset of chronic obstructive pulmonary disease tested positive for IgG to elastin in their serum compared to healthy controls. CONCLUSIONS: These data suggest that higher expression of CD46 in the lungs of ex-smoker protects them from emphysema and chronic obstructive pulmonary disease by clearing the inflammation impeding the proliferation of CD8(+) T cells and necrosis, achieved by production of T regulatory cells and degradation of C3b; restraining the complement cascade favors apoptosis over necrosis, protecting them from autoimmunity and chronic inflammation.


Assuntos
Proteína Cofatora de Membrana/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Animais , Complemento C3b/metabolismo , Elastina/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Pulmão/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fumar/efeitos adversos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
5.
J Immunol ; 178(12): 8090-6, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17548647

RESUMO

Increased numbers of T lymphocytes are observed in the lungs of patients with chronic obstructive pulmonary disease, but their role in the disease process is not known. We investigated the role of CD8+ T cells in inflammatory cell recruitment and lung destruction in a cigarette smoke-induced murine model of emphysema. In contrast to wild-type C57BL/6J mice that displayed macrophage, lymphocyte, and neutrophil recruitment to the lung followed by emphysema in response to cigarette smoke, CD8+ T cell-deficient (CD8-/-) mice had a blunted inflammatory response and did not develop emphysema when exposed to long-term cigarette smoke. Further studies supported a pathogenetic pathway whereby the CD8+ T cell product, IFN-gamma-inducible protein-10, induces production of macrophage elastase (matrix metalloproteinase 12) that degrades elastin, both causing lung destruction directly and generating elastin fragments that serve as monocyte chemokines augmenting macrophage-mediated lung destruction. These studies demonstrate a requirement for CD8+ T cells for the development of cigarette smoke-induced emphysema and they provide a unifying pathway whereby CD8+ T cells are a central regulator of the inflammatory network in chronic obstructive pulmonary disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Pulmão/imunologia , Pneumonia/imunologia , Enfisema Pulmonar/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Elastina/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos , Monócitos/imunologia , Pneumonia/induzido quimicamente , Pneumonia/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/patologia , Fumaça , Nicotiana/toxicidade
6.
J Biol Chem ; 281(50): 38894-904, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17018522

RESUMO

cAMP signaling is postulated to play a role in distal lung epithelial differentiation based on several observations. First, it enhances fibroblast growth factor-induced transdifferentiation of early tracheal epithelium into respiratory epithelium. Second, there are cAMP-responsive elements in the heterologous promoters of Sftpb and Sftpa genes. Third, cAMP augments the effect of dexamethasone in maintaining differentiation of human fetal type II pneumocyte culture. However, this concept has not been thoroughly tested in vivo. In the current study, we modulated cAMP signaling in developing distal lung epithelium in vivo using an inducible transgenic system that expressed a mutant form of Galpha(s) (Galpha(s)Q227L). We failed to demonstrate the ability of cAMP to promote distal epithelial maturation during embryonic stages. The results argue against its physiological role in this process. In addition, induction of cAMP signaling at the late pseudoglandular stage but not during the canalicular or saccular stage surprisingly delayed distal differentiation by suppressing the expression of Sftpc, Sftpa, and Aquaporin5 as well as the formation of lamellar bodies. This stage-specific inhibitory effect was observed in the absence of cellular toxicity or changes in branching. Transgenic lungs did not show significant changes in the known pathways that are important for distal differentiation. Therefore, we propose the existence of yet-to-be identified cAMP-sensitive novel regulators of early distal lung epithelial differentiation. Although the delay of differentiation seemed to be reversible at later stages, it still led to pronounced permanent postnatal airspace enlargement due to impaired paracrine function of distal epithelium in regulating alveolar myofibroblast development.


Assuntos
AMP Cíclico/metabolismo , Pulmão/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Proliferação de Células , Primers do DNA , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Imuno-Histoquímica , Pulmão/embriologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
PLoS Med ; 1(1): e8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15526056

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease and emphysema are a frequent result of long-term smoking, but the exact mechanisms, specifically which types of cells are associated with the lung destruction, are unclear. METHODS AND FINDINGS: We studied different subsets of lymphocytes taken from portions of human lungs removed surgically to find out which lymphocytes were the most frequent, which cell-surface markers these lymphocytes expressed, and whether the lymphocytes secreted any specific factors that could be associated with disease. We found that loss of lung function in patients with chronic obstructive pulmonary disease and emphysema was associated with a high percentage of CD4+ and CD8+ T lymphocytes that expressed chemokine receptors CCR5 and CXCR3 (both markers of T helper 1 cells), but not CCR3 or CCR4 (markers of T helper 2 cells). Lung lymphocytes in patients with chronic obstructive pulmonary disease and emphysema secrete more interferon gamma--often associated with T helper 1 cells--and interferon-inducible protein 10 and monokine induced by interferon, both of which bind to CXCR3 and are involved in attracting T helper 1 cells. In response to interferon-inducible protein 10 and monokine induced by interferon, but not interferon gamma, lung macrophages secreted macrophage metalloelastase (matrix metalloproteinase-12), a potent elastin-degrading enzyme that causes tissue destruction and which has been linked to emphysema. CONCLUSIONS: These data suggest that Th1 lymphoctytes in the lungs of people with smoking-related damage drive progression of emphysema through CXCR3 ligands, interferon-inducible protein 10, and monokine induced by interferon.


Assuntos
Macrófagos Alveolares/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/fisiopatologia , Células Th1/imunologia , Idoso , Quimiocina CXCL10 , Quimiocinas CXC/fisiologia , Citocinas/fisiologia , Progressão da Doença , Feminino , Humanos , Subpopulações de Linfócitos , Masculino , Pessoa de Meia-Idade , Receptores CXCR3 , Receptores de Quimiocinas/fisiologia , Fumar/efeitos adversos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...