Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(3): 362-368, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36797383

RESUMO

Mixed conductors-materials that can efficiently conduct both ionic and electronic species-are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact. Thus, the resulting material is ordered, exhibiting alternating layers of rigid semiconducting sheets and soft ion-conducting layers. This unique dual-network microstructure leads to a dynamic ionic/electronic nanocomposite with liquid-like ionic transport and highly mobile electronic charges. Using a combination of operando X-ray scattering and in situ spectroscopy, we confirm the ordered structure of the nanocomposite and uncover the mechanisms that give rise to efficient electron transport. These results provide fundamental insights into charge transport in organic semiconductors, as well as suggesting a pathway towards future improvements in these nanocomposites.

2.
ACS Macro Lett ; 9(5): 639-645, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35648570

RESUMO

Polymer chain dynamics of a nanostructured block copolymer electrolyte, polystyrene-block-poly(ethylene oxide) (SEO) mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, are investigated by neutron spin echo (NSE) spectroscopy on the 0.1-100 ns time scale and analyzed using the Rouse model at short times (t ≤ 10 ns) and the reptation tube model at long times (t ≥ 50 ns). In the Rouse regime, the monomeric friction coefficient increases with increasing salt concentration, as seen previously in homopolymer electrolytes. In the reptation regime, the tube diameters, which represent entanglement constraints, decrease with increasing salt concentration. The normalized longest molecular relaxation time, calculated from the NSE results, increases with increasing salt concentration. We argue that quantifying chain motion in the presence of ions is essential for predicting the behavior of polymer-electrolyte-based batteries operating at large currents.

3.
Phys Chem Chem Phys ; 21(15): 7857-7866, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916090

RESUMO

The performance of binary electrolytes is governed by three transport properties: conductivity, salt diffusion coefficient, and transference number. Rigorous methods for measuring conductivity and the salt diffusion coefficient are well established and used routinely in the literature. The commonly used methods for measuring transference number are the steady-state current method, t+,id, and pulsed field gradient NMR, t+,NMR. These methods yield the transference number only if the electrolyte is ideal, i.e., the salt dissociates completely into non-interacting anions and cations. In this work, we present a complete set of ion transport properties for mixtures of a functionalized perfluoroether, dimethyl carbonate terminated perfluorinated tetraethylene ether, and lithium bis(fluorosulfonyl)imide (LiFSI). The equations used to determine these properties from experimental data are based on Newman's concentrated solution theory. The concentrated-solution-theory-based transference number, t, is negative across all salt concentrations, and it increases with increasing salt concentration. In contrast, the ideal transference number, t+,id, is positive across all salt concentrations and it decreases with salt concentration. The NMR-based transference number, t+,NMR, is approximately 0.5, independent of salt concentration. The disparity between the three transference numbers, which indicates the dominance of ion clustering, is resolved by the use of Newman's concentrated solution theory.

4.
ACS Macro Lett ; 8(2): 107-112, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619416

RESUMO

The order-to-disorder transition temperature (TODT) in a series of mixtures of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is identified by the disappearance of a quadrupolar 7Li NMR triplet peak splitting above a critical temperature, where a singlet is observed. The macroscopic alignment of ordered domains required to produce a quadrupolar splitting occurs due to exposure to the NMR magnetic field. Alignment is confirmed using small-angle X-ray scattering (SAXS). The TODT determined by NMR is consistent with that determined using SAXS.

5.
ACS Nano ; 12(5): 4660-4668, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29723470

RESUMO

Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morphology consisting of concentric shells or a disordered lamellar morphology when chain dynamics are sufficiently slow to prevent defect annealing during solvent exchange. Blends of homopolymer and block copolymer in the feed stream generate more complex internally structured colloids, such as those with hierarchically structured Janus and patchy morphologies, due to additional phase separation and kinetic trapping effects. The ability of the FNP process to generate such a wide range of morphologies using a simple and scalable setup provides a pathway to manufacturing internally structured colloids on an industrial scale.

6.
Langmuir ; 33(23): 5835-5842, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28571320

RESUMO

In an effort to incorporate increasingly higher levels of functionality into soft nanoparticles, heterogeneously structured particles stand out as a simple means to enhance functionality by tailoring only particle architecture. Various means exist for the fabrication of particles with specific structural configurations; however, the tunability of particle morphology is still a challenging and often laborious task, especially in self-assembled systems where a single equilibrium configuration dominates. Improved strategies for multipatch particle assembly are therefore needed to allow for the tailoring of particle structure via a single, continuous assembly route. One means of accomplishing this is through kinetic trapping of particle morphologies along the path to the final equilibrium configuration in precipitation-induced, phase-separating polymer blends. Here, we demonstrate this capability by using rapid nanoprecipitation to control the overall size, composition, and patch distribution of soft colloids. In particular, we illustrate that polymer feed concentration, blend ratio, and polymer molecular weight can all serve as functional handles with which to consistently alter particle patch distributions in a self-assembling homopolymer system without redesigning the starting materials. We furthermore delineate the role of polymer vitrification in the determination of particle structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...