Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38730722

RESUMO

Non-small-cell lung cancer (NSCLC) is the most prevalent type of lung cancer, with extensively characterized mutational spectra. Several biomarkers (such as EGFR, BRAF, KRAS gene mutations, etc.) have emerged as predictive and prognostic markers for NSCLC. Unfortunately, the quality of the available tumor biopsy and/or cytology material is not always adequate to perform the necessary molecular testing, prompting the search for alternatives. Cell-free DNA (cfDNA) found in plasma is emerging as a highly promising avenue or a supplementary method for assessing the efficacy of cancer treatments. This is especially valuable in instances where conventional biopsy specimens, like formalin-fixed, paraffin-embedded (FFPE), or freshly frozen tumor tissues prove inadequate for conducting molecular pathology analyses subsequent to the initial diagnostic procedures. By leveraging cfDNA from plasma, clinicians gain an additional tool to gauge the effectiveness of cancer therapies, thereby enhancing their ability to optimize tailored treatment strategies. In this study, 51 Lithuanian females with NSCLC were analyzed, with adenocarcinoma being the predominant pathology diagnosis in 40 cases (78%). Target mutations were identified in 38 out of 51 patients (74.5%) in tumor tissue samples, while in plasma samples, they were identified in only 10 patients' samples (19.6%). Even though we did not have enough voluminous plasma samples in our study, gene mutations were detected in plasma from ten women, three of whom were diagnosed with early stages of lung cancer (stages I and II). For these patients, the following mutations were detected: deletion in exon 19 of the EGFR gene and single nucleotide polymorphisms in the TP53 and MET genes. All other women were diagnosed with stages III or IV of lung cancer. This indicates that the later stages of cancer contribute more cfDNA in plasma, making extraction less complicated.

2.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447977

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has emerged as a serious threat to human health worldwide. The effective disinfection of surfaces contaminated with SARS-CoV-2 may help prevent its spread. The aim of this study is to determine the duration required for viral RNA elimination by 222 nm far ultraviolet light using RT-qPCR as a tool. This study investigated the effect of 222 nm UVC irradiation on SARS-CoV-2 RNA in an in vitro experiment. The results showed that the copy number of SARS-CoV-2 RNA did not change even after 300 s of 222 nm UVC irradiation at 0.1 mW/cm2, but extending the exposure to more than 600 s reduced the number of copies of SARS-CoV-2 virus significantly. However, to fully validate the results and enhance the robustness of the findings, it is crucial to increase the number of samples analyzed in future experiments.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Raios Ultravioleta , RNA Viral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...