Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 887: 173440, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32745603

RESUMO

Activation of the voltage-gated Kv7 channels holds therapeutic promise in several neurological and psychiatric disorders, including epilepsy, schizophrenia, and depression. Here, we present a pharmacological characterization of Lu AA41178, a novel, pan-selective Kv7.2-7.5 opener, using both in vitro assays and a broad range of in vivo assays with relevance to epilepsy, schizophrenia, and depression. Electrophysiological characterization in Xenopus oocytes expressing human Kv7.2-Kv7.5 confirmed Lu AA41178 as a pan-selective opener of Kv7 channels by significantly left-shifting the activation threshold. Additionally, Lu AA41178 was tested in vitro for off-target effects, demonstrating a clean Kv7-selective profile, with no impact on common cardiac ion channels, and no potentiating activity on GABAA channels. Lu AA41178 was evaluated across preclinical in vivo assays with relevance to neurological and psychiatric disorders. In the maximum electroshock seizure threshold test and PTZ seizure threshold test, Lu AA41178 significantly increased the seizure thresholds in mice, demonstrating anticonvulsant efficacy. Lu AA41178 demonstrated antipsychotic-like activity by reducing amphetamine-induced hyperlocomotion in mice as well as lowering conditioned avoidance responses in rats. In the mouse forced swim test, a model with antidepressant predictivity, Lu AA41178 significantly reduced immobility. Additionally, behavioral effects typically observed with Kv7 openers was also characterized. In vivo assays were accompanied by plasma and brain exposures, revealing minimum effective plasma levels <1000 ng/ml. Lu AA41178, a potent opener of neuronal Kv7 channels demonstrate efficacy in assays of epilepsy, schizophrenia and depression and might serve as a valuable tool for exploring the role of Kv7 channels in both neurological and psychiatric disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Canal de Potássio KCNQ2/agonistas , Transtornos Mentais/tratamento farmacológico , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Canal de Potássio KCNQ2/metabolismo , Masculino , Transtornos Mentais/metabolismo , Transtornos Mentais/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêutico , Ratos , Ratos Wistar , Convulsões/metabolismo , Convulsões/psicologia , Resultado do Tratamento , Xenopus laevis
2.
Brain Res ; 1664: 37-47, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28366617

RESUMO

Studies of the antidepressant vortioxetine have demonstrated beneficial effects on cognitive dysfunction associated with depression. To elucidate how vortioxetine modulates neuronal activity during cognitive processing we investigated the effects of vortioxetine (3 and 10mg/kg) in rats performing an auditory oddball (deviant target) task. We investigated neuronal activity in target vs non-target tone responses in vehicle-treated animals using electroencephalographic (EEG) recordings. Furthermore, we characterized task performance and EEG changes in target tone responses of vortioxetine vs controls. Quantification of event-related potentials (ERPs) was supplemented by analyses of spectral power and inter-trial phase-locking. The assessed brain regions included prelimbic cortex, the hippocampus, and thalamus. As compared to correct rejection of non-target tones, correct target tone responses elicited increased EEG power in all regions. Additionally, neuronal synchronization was increased in vehicle-treated rats during both early and late ERP responses to target tones. This indicates a significant consistency of local phases across trials during high attentional load. During early sensory processing, vortioxetine increased both thalamic and frontal synchronized gamma band activity and EEG power in all brain regions measured. Finally, vortioxetine increased the amplitude of late hippocampal P3-like ERPs, the rodent correlate of the human P300 ERP. These findings suggest differential effects of vortioxetine during early sensory registration and late endogenous processing of auditory discrimination. Strengthened P3-like ERP response may relate to the pro-cognitive profile of vortioxetine in rodents. Further investigations are warranted to explore the mechanism by which vortioxetine increases network synchronization during attentive and cognitive processing.


Assuntos
Antidepressivos/administração & dosagem , Atenção/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Cognição/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Piperazinas/administração & dosagem , Sulfetos/administração & dosagem , Estimulação Acústica , Animais , Atenção/fisiologia , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Cognição/fisiologia , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Ratos Sprague-Dawley , Tálamo/efeitos dos fármacos , Tálamo/fisiologia , Vortioxetina
3.
J Neural Eng ; 14(2): 026012, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28177924

RESUMO

OBJECTIVE: Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. APPROACH: An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. MAIN RESULTS: While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. SIGNIFICANCE: The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.


Assuntos
Algoritmos , Percepção Auditiva/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados P300/fisiologia , Potenciais Evocados Auditivos/fisiologia , Análise de Ondaletas , Estimulação Acústica/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Basic Clin Pharmacol Toxicol ; 116(3): 187-200, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25441336

RESUMO

The nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels broadly involved in regulating neurotransmission in the central nervous system (CNS) by conducting cation currents through the membrane of neurons. Many different nAChR subtypes exist with each their functional characteristics, expression pattern and pharmacological profile. The focus of the present MiniReview is on the heteromeric α4ß2 nAChR, as activity at this subtype contributes to cognitive functioning through interactions with multiple neurotransmitter systems and is implicated in various CNS disorders, for example schizophrenia and Alzheimer's disease. Additionally, the α4ß2 nAChR provides an extra layer of molecular complexity by existing in two different stoichiometries determined by the subunit composition. Such findings have founded the rationale that pharmacological modulation of the α4ß2 nAChR may be used as a treatment approach in various CNS disorders. As subtype-selective agonists and other cholinergic ligands have only shown limited therapeutic success, the focus of recent drug development endeavours has largely shifted to positive allosteric modulators (PAMs). By potentiating the action of an agonist through binding to an allosteric site, a PAM can enhance cholinergic neurotransmission, thus compensating for compromised neuronal communication in a pathophysiological setting. The pharmacological advantages of PAMs compared to other types of ligands include minimal interference with spatial and temporal aspects of neurotransmission as well as higher subtype selectivity, hypothetically resulting in high clinical efficacy with minimal adverse effects. In this MiniReview, we describe the currently identified compounds, which potentiate the effects of agonists at the α4ß2 nAChR. The potential clinical advantages and concerns of PAMs are discussed in the light of the role of α4ß2 nAChRs as key regulators of fast synaptic transmission.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Agonistas Nicotínicos/uso terapêutico , Receptores Nicotínicos/efeitos dos fármacos , Regulação Alostérica , Sítio Alostérico , Animais , Doenças do Sistema Nervoso Central/fisiopatologia , Desenho de Fármacos , Humanos , Ligantes , Agonistas Nicotínicos/efeitos adversos , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos
5.
Neuropharmacology ; 79: 444-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24361451

RESUMO

The P300 (P3) event-related potential (ERP) is a neurophysiological signal believed to reflect cognitive processing of salient cues, and is thus used as a measure of attention and working memory. Additionally, P3 amplitude and latency is altered in neurological diseases and can be pharmacologically modulated. As P3-like ERPs can be recorded in rodents, it may serve as a potential translational biomarker of value for drug discovery. Here we investigated whether a positive allosteric modulator of α4ß2 nicotinic acetylcholine receptors, NS9283, and the psychostimulant modafinil could modulate P3-like ERPs in healthy adult rats performing an auditory oddball discrimination task. ERPs were recorded with electroencephalography electrodes implanted into mediodorsal (MD) thalamus, medial prefrontal cortex, hippocampus and auditory cortex (AC). P3-like ERPs were detected in all brain regions, displaying larger amplitudes in target trials compared to non-target trials. Administration of modafinil (64 mg/kg) decreased P3-like ERP latency in MD thalamus and AC, whereas NS9283 augmented P3-like ERP amplitude in MD thalamus at 0.3 mg/kg and in AC at 3.0 mg/kg. Additionally, N1 pre-attention peak amplitude in MD thalamus was increased with 0.3 mg/kg NS9283. Neither of the compounds enhanced task performance. Rather, modafinil lowered correct rejections in non-target trials. In summary, our findings reveal pharmacological modulation of the rat P3-like ERP in cortical and subcortical regions by modafinil and NS9283. These findings encourage further exploration of the rat P3-like ERP in order to promote the understanding of its meaning within cognition, as well as its applicability as a translatable biomarker in drug development.


Assuntos
Percepção Auditiva/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Encéfalo/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Oxidiazóis/farmacologia , Piridinas/farmacologia , Promotores da Vigília/farmacologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Eletrodos Implantados , Eletroencefalografia , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Modafinila , Testes Neuropsicológicos , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo , Análise e Desempenho de Tarefas , Fatores de Tempo
6.
Biochem Pharmacol ; 86(10): 1487-96, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24051136

RESUMO

Prefrontal glutamate release evoked through activation of α4ß2* nicotinic acetylcholine receptors (nAChRs) situated on thalamic glutamatergic afferents mediates cue detection processes and thus contributes to attentional performance. However, little is known about the respective contributions of the high sensitivity and low sensitivity (LS) stoichiometries of the α4ß2 nAChR, (α4)2(ß2)3 and (α4)3(ß2)2, to these processes. In the present study we employed glutamate-sensitive microelectrodes and the (α4)3(ß2)2-selective positive allosteric modulator (PAM) NS9283 to investigate the importance of the LS α4ß2 nAChR for glutamate release in the rat medial prefrontal cortex (mPFC). Firstly, the signaling evoked by physiologically relevant ACh concentrations through the (α4)3(ß2)2 nAChR in HEK293 cells was potentiated by NS9283, consistent with the classification of NS9283 as a PAM. In urethane-anesthetized rats, intra-prefrontal pressure ejections of NS9283 evoked glutamatergic transients. Importantly, this glutamate release was attenuated by removal of cholinergic projections to the recording area. This finding indicates that the effects of NS9283 depend on endogenous ACh, again consistent with effects of a PAM. We then conducted microdialysis to demonstrate the presence of extracellular ACh in urethane-anesthetized control rats. While detectable, those levels were significantly lower than in awake rats. Finally, the amplitudes of glutamatergic transients evoked by local pressure ejections of a low concentration of nicotine were significantly augmented following systemic administration of NS9283 (3.0mg/kg). In conclusion, our results indicate that a LS α4ß2 nAChR PAM such as NS9283 may enhance the cholinergic modulation of glutamatergic neurotransmission in the cortex, thereby perhaps alleviating the attentional impairments common to a range of brain disorders.


Assuntos
Acetilcolina/farmacologia , Ácido Glutâmico/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Oxidiazóis/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Regulação Alostérica , Animais , Células HEK293 , Humanos , Microeletrodos , Córtex Pré-Frontal/fisiologia , Ratos
7.
Cell Calcium ; 48(1): 1-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20646759

RESUMO

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) play a role in both innate immunity as well as cellular injury. H2O2 induces changes in intracellular calcium ([Ca(2+)]i) in many cell types and this seems to be at least partially mediated by transient receptor potential melastatin 2 (TRPM2) in cells that express this channel. Here we show that low concentrations of H2O2 induce the activation of the Ca(2+)-release activated Ca(2+) current I(CRAC). This effect is not mediated by direct CRAC channel activation, since H2O2 does not activate heterologously expressed CRAC channels independently of stromal interaction molecule (STIM). Instead, I(CRAC) activation is partially mediated by store depletion through activation of inositol 1,4,5 trisphosphate receptors (IP3R), since pharmacological inhibition of IP3 receptors by heparin or molecular knock-out of all IP3 receptors in DT40 B cells strongly reduce H2O2-induced I(CRAC). The remainder of H2O2-induced I(CRAC) activation is likely mediated by IP3R-independent store-depletion. Our data suggest that H2O2 can activate Ca(2+) entry through TRPM2 as well as store-operated CRAC channels, thereby adding a new facet to ROS-induced Ca(2+) signaling.


Assuntos
Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Peróxido de Hidrogênio/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células HEK293 , Humanos , Células Jurkat , Lantânio/farmacologia , Proteína ORAI1 , Técnicas de Patch-Clamp , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPM/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...