Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1014: 107-115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28864987

RESUMO

Maternal metabolic diseases such as diabetes mellitus with diabetogenic hypoinsulinemia and hyperglycemia change periconceptional developmental conditions in utero. In preimplantation rabbit embryos, all major metabolic pathways are affected. Alterations in protein, lipid and glucose metabolism, adipokines, advanced glycation end products (AGEs) and reactive oxygen species (ROS) are described in this review. The embryonic metabolism is characterized by a high plasticity which enables survival of most preimplantation embryos under the non-physiological developmental conditions in diabetic mothers. Adiponectin, for example, compensates for the missing insulin-driven glucose supply and stimulates intracellular lipid accumulation in embryonic cells. AGEs and ROS are clear indicators of metabolic stress. The price paid for survival, however, needs to be taken into consideration. It is an increase in lipogenesis and proteinogenesis, leading to metabolic stress and with potentially negative long-term health effects.


Assuntos
Blastocisto/metabolismo , Epigênese Genética , Fertilização , Gravidez em Diabéticas/metabolismo , Aminoácidos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Metabolismo dos Lipídeos , Fenótipo , Gravidez , Coelhos
2.
Hum Reprod ; 32(7): 1382-1392, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472298

RESUMO

STUDY QUESTION: How does a maternal diabetic hyperadiponectineamia affect signal transduction and lipid metabolism in rabbit preimplantation blastocysts? SUMMARY ANSWER: In a diabetic pregnancy increased levels of adiponectin led to a switch in embryonic metabolism towards a fatty acid-dependent energy metabolism, mainly affecting genes that are responsible for fatty acid uptake and turnover. WHAT IS KNOWN ALREADY: Although studies in cell culture experiments have shown that adiponectin is able to regulate lipid metabolism via 5'-AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα), data on the effects of adiponectin on embryonic lipid metabolism are not available. In a diabetic pregnancy in rabbits, maternal adiponectin levels are elevated fourfold and are accompanied by an increase in intracellular lipid droplets in blastocysts, implying consequences for the embryonic hormonal and metabolic environment. STUDY DESIGN, SIZE, DURATION: Rabbit blastocysts were cultured in vitro with adiponectin (1 µg/ml) and with the specific AMPK-inhibitor Compound C for 15 min, 1 h and 4 h (N ≥ 3 independent experiments: for RNA analysis, n ≥ 4 blastocysts per treatment group; for protein analysis three blastocysts pooled per sample and three samples used per experiment). Adiponectin signalling was verified in blastocysts grown in vivo from diabetic rabbits with a hyperadiponectinaemia (N ≥ 3 independent experiments, n ≥ 4 samples per treatment group, eight blastocysts pooled per sample). PARTICIPANTS/MATERIALS, SETTING, METHODS: In these blastocysts, expression of molecules involved in adiponectin signalling [adaptor protein 1 (APPL1), AMPK, acetyl-CoA carboxylase (ACC), p38 mitogen-activated protein kinases (p38 MAPK)], lipid metabolism [PPARα, cluster of differentiation 36 (CD36), fatty acid transport protein 4 (FATP4), fatty acid binding protein (FABP4), carnitine palmityl transferase 1 (CPT1), hormone-senstive lipase (HSL), lipoprotein lipase (LPL)] and members of the insulin/insulin-like growth factor (IGF)-system [IGF1, IGF2, insulin receptor (InsR), IGF1 receptor (IGF1R)] were analyzed by quantitative RT-PCR and western blot. Analyses were performed in both models, i.e. adiponectin stimulated blastocysts (in vitro) and in blastocysts grown in vivo under increased adiponectin levels caused by a maternal diabetes mellitus. MAIN RESULTS AND THE ROLE OF CHANCE: In both in vitro and in vivo models adiponectin increased AMPK and ACC phosphorylation, followed by an activation of the transcription factor PPARα, and CPT1, the key enzyme of ß-oxidation (all P < 0.05 versus control). Moreover, mRNA levels of the fatty acid transporters CD36, FATP4 and FABP4, and HSL were upregulated by adiponectin/AMPK signalling (all P < 0.05 versus control). Under diabetic developmental conditions the amount of p38 MAPK was upregulated (P < 0.01 versus non-diabetic), which was not observed in blastocysts cultured in vitro with adiponectin, indicating that the elevated p38 MAPK was not related to adiponectin. However, a second effect of adiponectin has to be noted: its intensification of insulin sensitivity, by regulating IGF availability and InsR/IGF1R expression. LARGE SCALE DATA: Not applicable. LIMITATIONS REASONS FOR CAUTION: There are two main limitations for our study. First, human and rabbit embryogenesis can only be compared during blastocyst development. Therefore, the inferences from our findings are limited to the embryonic stages investigated here. Second, the increased adiponectin levels and lack of maternal insulin is only typical for a diabetes mellitus type one model. WIDER IMPLICATIONS OF THE FINDINGS: This is the first mechanistic study demonstrating a direct influence of adiponectin on lipid metabolism in preimplantation embryos. The numbers of young women with a diabetes mellitus type one are increasing steadily. We have shown that preimplantation embryos are able to adapt to changes in the uterine milieu, which is mediated by the adiponectin/AMPK signalling. A tightly hormonal control during pregnancy is essential for survival and proper development. In this control process, adiponectin plays a more important role than known so far. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the German Research Council (DFG RTG ProMoAge 2155), the EU (FP7 Epihealth No. 278418, FP7-EpiHealthNet N°317146), COST Action EpiConcept FA 1201 and SALAAM BM 1308. The authors have no conflict(s) of interest to disclose.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Blastocisto/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Metabolismo dos Lipídeos , Gravidez em Diabéticas/metabolismo , Regulação para Cima , Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Aloxano , Animais , Blastocisto/enzimologia , Blastocisto/patologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/patologia , Ectogênese , Feminino , Regulação da Expressão Gênica no Desenvolvimento , PPAR alfa/genética , PPAR alfa/metabolismo , Fosforilação , Gravidez , Gravidez em Diabéticas/induzido quimicamente , Gravidez em Diabéticas/patologia , Processamento de Proteína Pós-Traducional , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...