Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36007820

RESUMO

Many symptoms used routinely for human psychiatric diagnosis cannot be directly observed in animals which cannot describe their internal states. However, the ultrasonic vocalizations (USV) rodents use to communicate their emotional states can be measured. USV have therefore become a particularly useful tool in brain disease models. Spontaneously hypertensive rats (SHR) are considered an animal model of attention deficit hyperactivity disorder (ADHD) and schizophrenia. However, the specifics of SHR's behavior have not been fully described and there is very little data on their USV. Recently, we developed a communication model, in which Wistar rats are exposed to pre-recorded playbacks of aversive (22-kHz) or appetitive (50-kHz) USV, and their vocal responses depend on the extent of prior fear conditioning (0, 1, 6 or 10 shocks). Here, we investigated SHR's behavior and heart rate (HR) in our communication model, in comparison to Wistar rats employed as controls. In general, SHR emitted typical USV categories, however, they contained more short 22-kHz and less 50-kHz USV overall. Moreover, fewer SHR, in comparison with Wistar rats, emitted long 22-kHz USV after fear conditioning. SHR did not show a 50-kHz playback-induced HR increase, while they showed a profound 22-kHz playback-induced HR decrease. Finally, the number of previously delivered conditioning shocks appeared to have no effect on the investigated vocal, locomotor and HR responses of SHR. The phenomena observed in SHR are potentially attributable to deficits in emotional perception and processing. A lower number of 50-kHz USV emitted by SHR may reflect observations of speech impairments in human patients and further supports the usefulness of SHR to model ADHD and schizophrenia.


Assuntos
Ultrassom , Vocalização Animal , Humanos , Ratos , Animais , Ratos Wistar , Ratos Endogâmicos SHR , Emoções , Roedores
2.
Brain Sci ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439589

RESUMO

We investigated the effects of prior stress on rats' responses to 50-kHz (appetitive) and 22-kHz (aversive) ultrasonic playback. Rats were treated with 0, 1, 6 or 10 shocks (1 s, 1.0 mA each) and were exposed to playbacks the following day. Previous findings were confirmed: (i) rats moved faster during 50-kHz playback and slowed down after 22-kHz playback; (ii) they all approached the speaker, which was more pronounced during and following 50-kHz playback than 22-kHz playback; (iii) 50-kHz playback caused heart rate (HR) increase; 22-kHz playback caused HR decrease; (iv) the rats vocalized more often during and following 50-kHz playback than 22-kHz playback. The previous shock affected the rats such that singly-shocked rats showed lower HR throughout the experiment and a smaller HR response to 50-kHz playback compared to controls and other shocked groups. Interestingly, all pre-shocked rats showed higher locomotor activity during 50-kHz playback and a more significant decrease in activity following 22-kHz playback; they vocalized more often, their ultrasonic vocalizations (USV) were longer and at a higher frequency than those of the control animals. These last two observations could point to hypervigilance, a symptom of post-traumatic stress disorder (PTSD) in human patients. Increased vocalization may be a valuable measure of hypervigilance used for PTSD modeling.

3.
Neurochem Res ; 41(1-2): 376-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26801175

RESUMO

Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of L-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (ß-alanyl-L-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the well documented anti-OS activity of His. Amino acids [His or Car (100 mg/kg)] were administrated 2 h before TAA (i.p., 300 mg/kg 3× in 24 h intervals) injection into Sprague-Dawley rats. The animals were thus tested for: (i) brain prefrontal cortex and blood contents of Car and His, (ii) amount of reactive oxygen species (ROS), total antioxidant capacity (TAC), GSSG/GSH ratio and thioredoxin reductase (TRx) activity, and (iii) behavioral changes (several models were used, i.e. tests for reflexes, open field, grip test, Rotarod). Brain level of Car was reduced in TAA rats, and His administration significantly elevated Car levels in control and TAA rats. Car partly attenuated TAA-induced ROS production and reduced GSH/GSSG ratio, whereas the increase of TRx activity in TAA brain was not significantly modulated by Car. Further, Car improved TAA-affected behavioral functions in rats, as was shown by the tests of righting and postural reflexes. Collectively, the results support the hypothesis that (i) Car may be added to the list of neuroprotective compounds of therapeutic potential on HE and that (ii) Car mediates at least a portion of the OS-attenuating activity of His in the setting of TAA-induced liver failure.


Assuntos
Carnosina/farmacologia , Falência Hepática/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Postura , Tioacetamida/toxicidade , Animais , Falência Hepática/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...