Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Methods Mol Biol ; 2702: 227-243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679622

RESUMO

The adaptive immune system of sharks comprises a unique heavy chain-only antibody isotype, termed immunoglobulin new antigen receptor (IgNAR), in which antigen binding is mediated by a single variable domain, referred to as vNAR. In recent years, efforts were made to harness these domains for biomedical and biotechnological applications particularly due to their high affinity and specificity combined with a small size and high stability. Herein, we describe protocols for the construction of semisynthetic, CDR3-randomized vNAR libraries for the isolation of target-specific paratopes by yeast surface display. Additionally, we provide guidance for affinity maturation of a panel of antigen-enriched vNAR domains through CDR1 diversification of the FACS-selected, antigen-enriched population and sublibrary establishment.


Assuntos
Anticorpos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Receptores de Antígenos de Linfócitos B , Anticorpos Antifúngicos , Isotipos de Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas
2.
Methods Mol Biol ; 2681: 291-311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405654

RESUMO

While yeast surface display (YSD) has gained traction for antibody hit discovery efforts with the first therapeutic YSD-isolated antibody sintilimab approved in 2018, a major drawback that remains is the time-consuming reformatting of monoclonal antibody (mAb) candidates. By using a Golden Gate cloning (GGC)-dependent workflow, the bulk transfer of genetic information can be performed from antibody fragments displayed on yeast cells to a bidirectional mammalian expression vector. Herein, we describe in-depth protocols for the reformatting of mAbs, starting from the generation of Fab fragment libraries in YSD vectors and ending up with IgG molecules in bidirectional mammalian vectors in a consolidated two-pot, two-step procedure.


Assuntos
Biblioteca de Peptídeos , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Fragmentos Fab das Imunoglobulinas , Imunoglobulina G , Vetores Genéticos , Mamíferos/genética
3.
Methods Mol Biol ; 2681: 343-359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405657

RESUMO

Integration of a gene of interest (GOI) into the genome of mammalian cells is the first step of cell line development campaigns for the production of biotherapeutics. Besides random integration methods, targeted gene integration approaches have emerged as promising tools over the last few years. In addition to reducing heterogeneity within a pool of recombinant transfectants, this process can also facilitate shorter timelines of the current cell line development process. Herein, we describe protocols for generating host cell lines carrying matrix attachment region (MAR)-rich landing pads (LPs), including BxB1 recombination sites. These LP-containing cell lines allow for site-specific and simultaneous integration of multiple GOIs. The resulting transgene-expressing stable recombinant clones can be used for the production of mono- or multispecific antibodies.


Assuntos
Regiões de Interação com a Matriz , Animais , Células Clonais/metabolismo , Proteínas Recombinantes/metabolismo , Transgenes
4.
Front Immunol ; 14: 1170042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081888

RESUMO

To construct a trispecific IgG-like antibody at least three different binding moieties need to be combined, which results in a complex architecture and challenging production of these molecules. Here we report for the first time the construction of trispecific natural killer cell engagers based on a previously reported two-in-one antibody combined with a novel anti-CD16a common light chain module identified by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibodies simultaneously target epidermal growth factor receptor (EGFR), programmed death-ligand 1 (PD-L1) and CD16a with two Fab fragments, resulting in specific cellular binding properties on EGFR/PD-L1 double positive tumor cells and a potent ADCC effect. This study paves the way for further development of multispecific therapeutic antibodies derived from avian immunization with desired target combinations, valencies, molecular symmetries and architectures.


Assuntos
Antígeno B7-H1 , Células Matadoras Naturais , Antígeno B7-H1/metabolismo , Anticorpos/metabolismo , Receptores ErbB/metabolismo
5.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555321

RESUMO

The Tyro, Axl, and MerTK receptors (TAMRs) play a significant role in the clearance of apoptotic cells. In this work, the spotlight was set on MerTK, as it is one of the prominent TAMRs expressed on the surface of macrophages and dendritic cells. MerTK-specific antibodies were previously isolated from a transgenic rat-derived immune library with suitable biophysical properties. Further characterisation resulted in an agonistic MerTK antibody that led to phospho AKT activation in a dose-dependent manner. In this proof-of-concept study, a MerTK-specific antibody, MerK28, was combined with tandem, biparatopic EGFR-binding VHH camelid antibody domains (7D9G) in different architectures to generate bispecific antibodies with the capacity to bind EGFR and MerTK simultaneously. The bispecific molecules exhibited appropriate binding properties with regard to both targets in their soluble forms as well as to cells, which resulted in the engagement of macrophage-like THP-1 cells with epidermoid carcinoma A431 cells. Furthermore, targeted phagocytosis in co-culture experiments was observed only with the bispecific variants and not the parental MerTK-binding antibody. This work paves the way for the generation of bispecific macrophage-engaging antibodies for targeted phagocytosis harnessing the immune-modulating roles of MerTK in immunotherapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , c-Mer Tirosina Quinase/metabolismo , Anticorpos Biespecíficos/farmacologia , Fagocitose , Imunoterapia , Receptores ErbB
6.
Front Immunol ; 13: 1051875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439165

RESUMO

Harnessing the innate power of T cells for therapeutic benefit has seen many shortcomings due to cytotoxicity in the past, but still remains a very attractive mechanism of action for immune-modulating biotherapeutics. With the intent of expanding the therapeutic window for T-cell targeting biotherapeutics, we present an attenuated trispecific T-cell engager (TCE) combined with an anti- interleukin 6 receptor (IL-6R) binding moiety in order to modulate cytokine activity (TriTECM). Overshooting cytokine release, culminating in cytokine release syndrome (CRS), is one of the severest adverse effects observed with T-cell immunotherapies, where the IL-6/IL-6R axis is known to play a pivotal role. By targeting two tumour-associated antigens, epidermal growth factor receptor (EGFR) and programmed death ligand 1 (PD-L1), simultaneously with a bispecific two-in-one antibody, high tumour selectivity together with checkpoint inhibition was achieved. We generated tetrafunctional molecules that contained additional CD3- and IL-6R-binding modules. Ligand competition for both PD-L1 and IL-6R as well as inhibition of both EGF- and IL-6-mediated signalling pathways was observed. Furthermore, TriTECM molecules were able to activate T cells and trigger T-cell-mediated cytotoxicity through CD3-binding in an attenuated fashion. A decrease in pro-inflammatory cytokine interferon γ (IFNγ) after T-cell activation was observed for the TriTECM molecules compared to their respective controls lacking IL-6R binding, hinting at a successful attenuation and potential modulation via IL-6R. As IL-6 is a key player in cytokine release syndrome as well as being implicated in enhancing tumour progression, such molecule designs could reduce side effects and cytotoxicity observed with previous TCEs and widen their therapeutic windows.


Assuntos
Antígeno B7-H1 , Síndrome da Liberação de Citocina , Humanos , Síndrome da Liberação de Citocina/etiologia , Interleucina-6/metabolismo , Linfócitos T , Soro Antilinfocitário , Citocinas
7.
Front Bioeng Biotechnol ; 10: 794389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620472

RESUMO

Yeast-surface display (YSD) is commonly applied to screen Fab immune or naïve libraries for binders of predefined target molecules. However, reformatting of isolated variants represents a time-intensive bottleneck. Herein, we present a novel approach to facilitate a lean transition from antibody screening using YSD Fab libraries to the production of full-length IgG antibodies in Expi293-F cells. In this study, utilizing Golden Gate Cloning (GGC) and a bidirectional promoter system, an exemplary Fab-displaying YSD library was generated based on immunised transgene rats. After subsequent screening for antigen-specific antibody candidates by fluorescence-activated cell sorting (FACS), the Fab-encoding genes were subcloned into a bidirectional mammalian expression vector, exhibiting CH2-CH3 encoding genes, in a GGC-mediated, PCR-free manner. This novel, straightforward and time-saving workflow allows the VH/VL pairing to be preserved. This study resulted in antibody variants exhibiting suitable biophysical properties and covered a broad VH diversity after two rounds of FACS screening, as revealed by NGS analysis. Ultimately, we demonstrate that the implication of such a gene transfer system streamlines antibody hit discovery efforts, allowing the faster characterisation of antibodies against a plethora of targets that may lead to new therapeutic agents.

8.
Front Immunol ; 13: 888838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479092

RESUMO

Various formats of bispecific antibodies exist, among them Two-in-One antibodies in which each Fab arm can bind to two different antigens. Their IgG-like architecture accounts for low immunogenicity and also circumvents laborious engineering and purification steps to facilitate correct chain pairing. Here we report for the first time the identification of a Two-in-One antibody by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibody simultaneously targets the epidermal growth factor receptor (EGFR) and programmed death-ligand 1 (PD-L1) at the same Fv fragment with two non-overlapping paratopes. The dual action Fab is capable of inhibiting EGFR signaling by binding to dimerization domain II as well as blocking the PD-1/PD-L1 interaction. Furthermore, the Two-in-One antibody demonstrates specific cellular binding properties on EGFR/PD-L1 double positive tumor cells. The presented strategy relies solely on screening of combinational immune-libraries and obviates the need for any additional CDR engineering as described in previous reports. Therefore, this study paves the way for further development of therapeutic antibodies derived from avian immunization with novel and tailor-made binding properties.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1 , Animais , Antígeno B7-H1/metabolismo , Galinhas , Receptores ErbB/metabolismo , Imunização
9.
Methods Mol Biol ; 2491: 177-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482191

RESUMO

Yeast surface display (YSD) emerged as a prominent screening methodology for the isolation of monoclonal antibodies (mAbs) against various antigens. However, phage display remains the gold standard in cell panning-based screenings to isolate mAbs against difficult-to-screen targets, such as G-protein coupled receptors (GPCR) and ion channels. Herein we describe a step-by-step protocol to establish and perform the isolation of mAbs using YSD in a fluorescence-activated cell sorting (FACS)-assisted biopanning manner, yielding a variety of antibodies binding their antigen with high affinity in the natural environment of the cell. Upon mixing antibody-displaying yeast cells with antigen-displaying mammalian cells, complexes are specifically formed and isolated for enrichment of yeast cells encoding binders against the antigen. The utilization of mammalian cells expressing the respective target accounts for accessibility of the epitope and the correct conformation of the antigen. Furthermore, critical characterization methods mandatory for this kind of antibodies are illuminated.


Assuntos
Bioprospecção , Saccharomyces cerevisiae , Animais , Anticorpos Monoclonais/química , Antígenos , Técnicas de Visualização da Superfície Celular , Citometria de Fluxo/métodos , Mamíferos , Biblioteca de Peptídeos , Saccharomyces cerevisiae/metabolismo
10.
Methods Mol Biol ; 2491: 335-360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482199

RESUMO

Chicken-derived antibodies emerged as a promising tool for diagnostic and therapeutic usage. Due to the phylogenetic distance between birds and mammals, chicken immunization campaigns with human antigens result in a chicken antibody (IgY) repertoire targeting epitopes not addressed by rodent-derived antibodies. However, this phylogenetic distance accounts for a low homology of IgY molecules to human antibodies, resulting in potential immunogenicity and thus excluding IgYs from therapeutic applications. Herein, we describe a straightforward method to efficiently humanize chicken-derived antibodies by a CDR-grafting-based approach, including a simultaneous randomization of key residues (Vernier residues). Utilizing yeast surface display (YSD) and fluorescence-activated cell sorting (FACS), yeast cells displaying functional humanized scFvs and Fab variants are isolated, and subsequent next-generation sequencing (NGS) enables the identification of humanized antibody variants with restored affinity and beneficial protein characteristics.


Assuntos
Galinhas , Saccharomyces cerevisiae , Animais , Anticorpos/metabolismo , Mamíferos , Biblioteca de Peptídeos , Filogenia , Saccharomyces cerevisiae/metabolismo
11.
Antibodies (Basel) ; 10(2)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068440

RESUMO

Monoclonal antibodies (mAbs) have demonstrated tremendous effects on the treatment of various disease indications and remain the fastest growing class of therapeutics. Production of recombinant antibodies is performed using mammalian expression systems to facilitate native antibody folding and post-translational modifications. Generally, mAb expression systems utilize co-transfection of heavy chain (hc) and light chain (lc) genes encoded on separate plasmids. In this study, we examine the production of two FDA-approved antibodies using a bidirectional (BiDi) vector encoding both hc and lc with mirrored promoter and enhancer elements on a single plasmid, by analysing the individual hc and lc mRNA expression levels and subsequent quantification of fully-folded IgGs on the protein level. From the assessment of different promoter combinations, we have developed a generic expression vector comprised of mirrored enhanced CMV (eCMV) promoters showing comparable mAb yields to a two-plasmid reference. This study paves the way to facilitate small-scale mAb production by transient cell transfection with a single vector in a cost- and time-efficient manner.

12.
Front Oncol ; 11: 672262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123841

RESUMO

Bladder cancer is a frequent malignancy and has a clinical need for new therapeutic approaches. Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate innovative therapeutic entities with novel mechanisms of action. Furthermore, mRNA-based pharmaceuticals recently reached the market and CAR-T cells and viral-based gene therapy remain a major focus of biomedical research. This review focuses on the engineering of biologics, particularly therapeutic antibodies and their application in preclinical development and clinical trials, as well as approved monoclonal antibodies for the treatment of bladder cancer. Besides, newly emerging entities in the realm of bladder cancer like mRNA, gene therapy or cell-based therapeutics are discussed and evaluated. As many discussed molecules exhibit unique mechanisms of action based on innovative protein engineering, they reflect the next generation of cancer drugs. This review will shed light on the engineering strategies applied to develop these next generation treatments and provides deeper insights into their preclinical profiles, clinical stages, and ongoing trials. Furthermore, the distribution and expression of the targeted antigens and the intended mechanisms of action are elucidated.

13.
Front Immunol ; 12: 669496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040611

RESUMO

Natural killer cell engagers gained enormous interest in recent years due to their potent anti-tumor activity and favorable safety profile. Simultaneously, chicken-derived antibodies entered clinical studies paving the way for avian-derived therapeutics. In this study, we describe the affinity maturation of a common light chain (cLC)-based, chicken-derived antibody targeting EGFR, followed by utilization of the same light chain for the isolation of CD16a- and PD-L1-specific monoclonal antibodies. The resulting binders target their respective antigen with single-digit nanomolar affinity while blocking the ligand binding of all three respective receptors. Following library-based humanization, bispecific and trispecific variants in a standard 1 + 1 or a 2 + 1 common light chain format were generated, simultaneously targeting EGFR, CD16a, and PD-L1. The trispecific antibody mediated an elevated antibody-dependent cellular cytotoxicity (ADCC) in comparison to the EGFR×CD16a bispecific variant by effectively bridging EGFR/PD-L1 double-positive cancer cells with CD16a-positive effector cells. These findings represent, to our knowledge, the first detailed report on the generation of a trispecific 2 + 1 antibodies exhibiting a common light chain and illustrate synergistic effects of trispecific antigen binding. Overall, this generic procedure paves the way for the engineering of tri- and oligospecific therapeutic antibodies derived from avian immunizations.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Desenho de Fármacos , Epitopos , Inibidores de Checkpoint Imunológico/farmacologia , Cadeias Leves de Imunoglobulina/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Especificidade de Anticorpos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Galinhas , Citotoxicidade Imunológica/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Inibidores de Checkpoint Imunológico/imunologia , Imunização , Cadeias Leves de Imunoglobulina/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores de IgG/antagonistas & inibidores , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
14.
Biotechnol J ; 16(3): e2000240, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32914549

RESUMO

The phylogenetic distance between chickens and humans accounts for a strong immune response and a broader epitope coverage compared to rodent immunization approaches. Here the authors report the isolation of common light chain (cLC)-based chicken monoclonal antibodies from an anti-epidermal growth factor receptor (EGFR) immune library utilizing yeast surface display in combination with yeast biopanning and fluorescence-activated cell sorting (FACS). For the selection of high-affinity antibodies, a yeast cell library presenting cLC-comprising fragment antigen binding (Fab) fragments is panned against hEGFR-overexpressing A431 cells. The resulting cell-cell-complexes are sorted by FACS resulting in gradual enrichment of EGFR-binding Fabs in three sorting rounds. The isolated antibodies share the same light chain and show high specificity for EGFR, resulting in selective binding to A431 cells with notable EC50 values. All identified antibodies show very good aggregation propensity profiles and thermostabilities. Additionally, epitope binning demonstrates that these cLC antibodies cover a broad epitope space. Isolation of antibodies from immunized chickens by yeast cell biopanning makes an addition to the repertoire of methods for antibody library screening, paving the way for the generation of cLC-based bispecific antibodies against native mammalian receptors.


Assuntos
Galinhas , Saccharomyces cerevisiae , Animais , Bioprospecção , Citometria de Fluxo , Biblioteca de Peptídeos , Filogenia , Saccharomyces cerevisiae/genética
15.
Int J Pharm ; 594: 120164, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309833

RESUMO

Therapeutic monoclonal antibodies and related products have steadily grown to become the dominant product class within the biopharmaceutical market. Production of antibodies requires special precautions to ensure safety and efficacy of the product. In particular, minimizing antibody product heterogeneity is crucial as drug substance variants may impair the activity, efficacy, safety, and pharmacokinetic properties of an antibody, consequently resulting in the failure of a product in pre-clinical and clinical development. This review will cover the manufacturing and formulation challenges and advances of therapeutic monoclonal antibodies, focusing on improved processes to minimize variants and ensure batch-to-batch consistency. Processes put in place by regulatory agencies, such as Quality-by-Design (QbD) and current Good Manufacturing Practices (cGMP), and how their implementation has aided drug development in pharmaceutical companies will be reviewed. Advances in formulation and considerations on the intended use of a therapeutic antibody, including the route of administration and patient compliance, will be discussed.


Assuntos
Antineoplásicos Imunológicos , Preparações Farmacêuticas , Anticorpos Monoclonais , Linhagem Celular , Humanos
16.
Biotechnol J ; 16(3): e2000231, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33078896

RESUMO

Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.


Assuntos
Galinhas , Saccharomyces cerevisiae , Animais , Afinidade de Anticorpos , Galinhas/genética , Regiões Determinantes de Complementaridade/genética , Mineração de Dados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Saccharomyces cerevisiae/genética
17.
Front Immunol ; 11: 560244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324393

RESUMO

The B-cell receptor (BCR) is a key player of the adaptive immune system. It is a unique part of immunoglobulin (Ig) molecules expressed on the surface of B cells. In case of many B-cell lymphomas, the tumor cells express a tumor-specific and functionally active BCR, also known as idiotype. Utilizing the idiotype as target for lymphoma therapy has emerged to be demanding since the idiotype differs from patient to patient. Previous studies have shown that shark-derived antibody domains (vNARs) isolated from a semi-synthetic CDR3-randomized library allow for the rapid generation of anti-idiotype binders. In this study, we evaluated the potential of generating patient-specific binders against the idiotype of lymphomas. To this end, the BCRs of three different lymphoma cell lines SUP-B8, Daudi, and IM-9 were identified, the variable domains were reformatted and the resulting monoclonal antibodies produced. The SUP-B8 BCR served as antigen in fluorescence-activated cell sorting (FACS)-based screening of the yeast-displayed vNAR libraries which resulted after three rounds of screening in the enrichment of antigen-binding vNARs. Five vNARs were expressed as Fc fusion proteins and consequently analyzed for their binding to soluble antigen using biolayer interferometry (BLI) revealing binding constants in the lower single-digit nanomolar range. These variants showed specific binding to the parental SUP-B8 cell line confirming a similar folding of the recombinantly expressed proteins compared with the native cell surface-presented BCR. First initial experiments to utilize the generated vNAR-Fc variants for BCR-clustering to induce apoptosis or ADCC/ADCP did not result in a significant decrease of cell viability. Here, we report an alternative approach for a personalized B-cell lymphoma therapy based on the construction of vNAR-Fc antibody-drug conjugates to enable specific killing of malignant B cells, which may widen the therapeutic window for B-cell lymphoma therapy.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Especificidade de Anticorpos , Antineoplásicos Imunológicos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Tubarões/imunologia , Animais , Anticorpos Anti-Idiotípicos/genética , Especificidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Expressão Gênica , Biblioteca Gênica , Humanos , Imunoconjugados/genética , Imunoconjugados/farmacologia , Imunofenotipagem , Linfoma/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de Antígenos de Linfócitos B/sangue , Receptores de Antígenos de Linfócitos B/genética , Proteínas Recombinantes de Fusão/genética , Tubarões/genética
18.
Protein Eng Des Sel ; 332020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33128053

RESUMO

Established monoclonal antibodies (mAbs) allow treatment of cancers, autoimmune diseases and other severe illnesses. Side effects either arise due to interaction with the target protein and its biology or result from of the patient's immune system reacting to the foreign protein. This immunogenic reaction against therapeutic antibodies is dependent on various factors. The presence of non-human sequences can trigger immune responses as well as chemical and post-translational modifications of the antibody. However, even fully human antibodies can induce immune response through T cell epitopes or aggregates. In this review, we briefly describe, how therapeutic antibodies can interact with the patient's immune system and summarize recent advancements in protein engineering and in silico methods to reduce immunogenicity of therapeutic monoclonal antibodies.


Assuntos
Anticorpos Monoclonais , Engenharia de Proteínas , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos
19.
Front Immunol ; 11: 606878, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424853

RESUMO

Bispecific (BsAb) and biparatopic (BpAb) antibodies emerged as promising formats for therapeutic biologics exhibiting tailor-made functional properties. Over recent years, chicken-derived antibodies have gained traction for diagnostic and therapeutic applications due to their broad epitope coverage and convenience of library generation. Here we report the first generation of a biparatopic common light chain (cLC) chicken-derived antibody by an epitope binning-based screening approach using yeast surface display. The resulting monospecific antibodies target conformational epitopes on domain II or III of the epidermal growth factor receptor (EGFR) with lower double- or single-digit nanomolar affinities, respectively. Furthermore, the domain III targeting variant was shown to interfere with epidermal growth factor (EGF) binding. Utilizing the Knob-into-Hole technology (KiH), a biparatopic antibody with subnanomolar affinity was generated that facilitates clustering of soluble and cell-bound EGFR and displayed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) compared to the parental antibodies. This strategy for generating cLC-based biparatopic antibodies from immunized chickens may pave the way for their further development in therapeutic settings.


Assuntos
Anticorpos Biespecíficos/metabolismo , Antineoplásicos Imunológicos/metabolismo , Técnicas de Visualização da Superfície Celular , Galinhas/imunologia , Imunização , Cadeias Leves de Imunoglobulina/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Especificidade de Anticorpos , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Bioprospecção , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Mapeamento de Epitopos , Epitopos , Receptores ErbB/administração & dosagem , Receptores ErbB/imunologia , Humanos , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Leves de Imunoglobulina/farmacologia , Saccharomyces cerevisiae/genética
20.
Methods Mol Biol ; 2070: 211-222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31625098

RESUMO

Yeast surface display (YSD) is an ultra-high throughput method used in protein engineering. Protein-protein interactions as well as surface presentation on the yeast cell surface are verified through fluorophore-conjugated labeling agents.In this chapter we describe an improved setup for full-length surface presentation detection. To this end, we used a single open reading frame (ORF) encoding for the protein to be displayed and a 2A sequence and tGFP for an intracellular fluorescence signal. The 2A sequence allows the simultaneous generation of two separate proteins from the same ORF through ribosomal skipping. The entangled expression of the POI on the yeast surface and intracellular tGFP obviates the need for fluorescent staining steps.


Assuntos
Proteínas de Fluorescência Verde , Fases de Leitura Aberta , Biblioteca de Peptídeos , Engenharia de Proteínas , Saccharomyces cerevisiae , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...