Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micron ; 115: 41-49, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173001

RESUMO

This work addresses aspects for the analysis of industrial relevant materials via transmission electron microscopy (TEM). The complex phase chemistry and structural diversity of these materials require several characterization techniques to be employed simultaneously; unfortunately, different characterization techniques often lack connection to yield a complete and consistent picture. This paper describes a continuous path, starting with the acquisition of 3D diffraction data - alongside classical high-resolution imaging techniques - and linking the structural characterization of hard metal industrial samples with energy-loss fine-structure simulations, quantitative electron energy-loss (EEL) and energy-dispersive X-ray (EDX) spectroscopy. Thereby, the compositional analysis of a MAX phase indicated an offset of the hydrogenic, theoretical sensitivity factors, originating from poorly-adjusted screening factors. In a next step, these results were matched against quantitative compositions and parameters obtained from X-ray spectroscopy data, carried out synchronously with EELS.

2.
Sci Rep ; 8(1): 6160, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670129

RESUMO

By the fabrication of periodically arranged nanomagnetic systems it is possible to engineer novel physical properties by realizing artificial lattice geometries that are not accessible via natural crystallization or chemical synthesis. This has been accomplished with great success in two dimensions in the fields of artificial spin ice and magnetic logic devices, to name just two. Although first proposals have been made to advance into three dimensions (3D), established nanofabrication pathways based on electron beam lithography have not been adapted to obtain free-form 3D nanostructures. Here we demonstrate the direct-write fabrication of freestanding ferromagnetic 3D nano-architectures. By employing micro-Hall sensing, we have determined the magnetic stray field generated by our free-form structures in an externally applied magnetic field and we have performed micromagnetic and macro-spin simulations to deduce the spatial magnetization profiles in the structures and analyze their switching behavior. Furthermore we show that the magnetic 3D elements can be combined with other 3D elements of different chemical composition and intrinsic material properties.

3.
Carbohydr Polym ; 164: 294-300, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325328

RESUMO

The synthesis and characterization of bismuth sulfide-cellulose nanocomposite thin films was explored. The films were prepared using organosoluble precursors, namely bismuth xanthates for Bi2S3 and trimethylsilyl cellulose (TMSC) for cellulose. Solutions of these precursors were spin coated onto solid substrates yielding homogeneous precursor films. Afterwards, a heating step under inert atmosphere led to the formation of thin nanocomposite films of bismuth sulfide nanoparticles within the TMSC matrix. In a second step, the silyl groups were cleaved off by vapors of HCl yielding bismuth sulfide/cellulose nanocomposite films. The thin films were characterized by a wide range of surface sensitive techniques such as atomic force microscopy, attenuated total reflection infrared spectroscopy, transmission electron microscopy and wettability investigations. In addition, the formation of the nanoparticle directly in the TMSC matrix was investigated in situ by GI-SWAXS using a temperature controlled sample stage.

4.
Nanoscale ; 7(32): 13387-92, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26203627

RESUMO

We report on the design and synthesis of high performance catalytic nanoparticles with a robust geometry via magnetron-sputter inert-gas condensation. Sputtering of Pd and Mg from two independent neighbouring targets enabled heterogeneous condensation and growth of nanoparticles with controlled Pd core-MgO porous shell structure. The thickness of the shell and the number of cores within each nanoparticle could be tailored by adjusting the respective sputtering powers. The nanoparticles were directly deposited on glassy carbon electrodes, and their catalytic activity towards methanol oxidation was examined by cyclic voltammetry. The measurements indicated that the catalytic activity was superior to conventional bare Pd nanoparticles. As confirmed by electron microscopy imaging and supported by density-functional theory (DFT) calculations, we attribute the improved catalytic performance primarily to inhibition of Pd core sintering during the catalytic process by the metal-oxide shell.

5.
Beilstein J Nanotechnol ; 6: 1082-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171284

RESUMO

Controlling magnetic properties on the nanometer-scale is essential for basic research in micro-magnetism and spin-dependent transport, as well as for various applications such as magnetic recording, imaging and sensing. This has been accomplished to a very high degree by means of layered heterostructures in the vertical dimension. Here we present a complementary approach that allows for a controlled tuning of the magnetic properties of Co/Pt heterostructures on the lateral mesoscale. By means of in situ post-processing of Pt- and Co-based nano-stripes prepared by focused electron beam induced deposition (FEBID) we are able to locally tune their coercive field and remanent magnetization. Whereas single Co-FEBID nano-stripes show no hysteresis, we find hard-magnetic behavior for post-processed Co/Pt nano-stripes with coercive fields up to 850 Oe. We attribute the observed effects to the locally controlled formation of the CoPt L10 phase, whose presence has been revealed by transmission electron microscopy.

6.
Nanotechnology ; 26(17): 175502, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25854640

RESUMO

We report on conductometric gas sensors based on single CuO nanowires and compare the carbon monoxide (CO) sensing properties of pristine as well as Pd nanoparticle decorated devices in humid atmosphere. Magnetron sputter inert gas aggregation combined with a quadrupole mass filter for cluster size selection was used for single-step Pd nanoparticle deposition in the soft landing regime. Uniformly dispersed, crystalline Pd nanoparticles with size-selected diameters around 5 nm were deposited on single CuO nanowire devices in a four point configuration. During gas sensing experiments in humid synthetic air, significantly enhanced CO response for CuO nanowires decorated with Pd nanoparticles was observed, which validates that magnetron sputter gas aggregation is very well suited for the realization of nanoparticle-functionalized sensors with improved performance.

7.
Carbohydr Polym ; 117: 34-42, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25498606

RESUMO

Simultaneous antibacterial and anticoagulant surfaces have been prepared by immobilization of engineered gold nanoparticles onto different kinds of surfaces. The gold nanoparticle core is surrounded by a hemocompatible, anticoagulant polysaccharide, 6-O chitosan sulfate, which serves as reduction and stabilizing agent for the generation of gold nanoparticles in a microwave mediated reaction. The particle suspension shows anticoagulant activity, which is investigated by aPTT and PT testing on citrated blood samples of three patients suffering from congenital or acquired bleeding disorders. The amount of nanoparticles deposited on the surfaces is quantified by a quartz crystal microbalance with dissipation unit. All gold containing surfaces exhibit excellent antimicrobial properties against the chosen model organism, Escherichia coli MG 1655 [R1-16]. Moreover, blood plasma coagulation times of the surfaces are increased after deposition of the engineered nanoparticles as demonstrated by QCM-D.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas , Cápsulas , Celulose/química , Quitosana/química , Engenharia , Escherichia coli/efeitos dos fármacos , Humanos , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Sulfatos/química , Propriedades de Superfície
8.
Nanotechnology ; 24(17): 175305, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23571599

RESUMO

The fundamental dependence between process parameters during focused electron beam induced deposition and the chemistry of functional PtC nanostructures have been studied via a multi-technique approach using SEM, (S)TEM, EELS, AFM, and EFM. The study reveals that the highest Pt contents can only be achieved by an ideal balance between potentially dissociating electrons and available precursor molecules on the surface. For precursor regimes apart from this situation, an unwanted increase of carbon is observed which originates from completely different mechanisms: (1) an excess of electrons leads to polymerization of precursor fragments whereas (2) a lack of electrons leads to incompletely dissociated precursor molecules incorporated into the nanostructures. While the former represents an unwanted class of carbon, the latter condition maximizes the volume growth rates and allows for post-growth curing strategies which can strongly increase the functionality. Furthermore, the study gives an explanation of why growing deposits can dynamically change their chemistry and provides a straightforward guide towards more controlled fabrication conditions.

9.
J Mater Chem B ; 1(15): 2022-2030, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32260891

RESUMO

The rational design of silver nanoparticles encapsulated in an anticoagulant, hemocompatible polysaccharide, 6-O-chitosan sulfate, is presented. Three different approaches are described for the immobilization of these core shell particles on cellulosic surfaces. The mass of the immobilized particles is quantified using a quartz crystal microbalance with dissipation (QCM-D). The antimicrobial activity of the surfaces towards E. coli MG 1655 [R1-16] is investigated by live/dead assays using fluorescence staining. All surfaces treated with the designed nanoparticles exhibit excellent antimicrobial activity towards E. coli MG 1655 [R1-16]. Anticoagulant properties of blood plasma on the nanoparticle treated surfaces have been determined using QCM-D. In comparison with the unmodified substrates, the total coagulation time as well as the thrombin formation time and fibrin clotting time of surfaces modified with nanoparticles are significantly increased.

10.
Phys Chem Chem Phys ; 14(39): 13624-9, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22872155

RESUMO

In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.


Assuntos
Cobre/química , Líquidos Iônicos/química , Óxidos/química , Tantálio/química , Galvanoplastia , Estrutura Molecular , Propriedades de Superfície , Vácuo
12.
Acta Crystallogr B ; 62(Pt 6): 1002-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17108653

RESUMO

The crystal structure of the low-temperature form of barium metagermanate (BaGeO3) has been determined from laboratory X-ray powder diffraction data collected at 298.5 (5) K. The structure was found to consist of alternating layers of Ba cations and [GeO3]3 rings, and is closely related to pseudo-wollastonite. The rings show a twofold positional disorder owing to stacking faults. The stacking is not random, but can be rationalized by a twinning mechanism mapping the two non-congruent enantiomorphic polytypes of the structure onto each other. This model also explains the diffuse scattering and twinning observed in SAED and HRTEM, as well as the size and strain-like broadening effects found in the XRPD pattern.


Assuntos
Bário/química , Germânio/química , Oxigênio/química , Temperatura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Difração de Pó , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...