Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(59): 9134-9137, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37409424

RESUMO

We synthesize a Sn-modified MIL-101(Fe), which can confine Pt to the single-atom scale. This novel Pt@MIL(FeSn) catalyst efficiently hydrogenates levulinic acid to γ-valerolactone (TOF: 1386 h-1, yield: >99%) at only 100 °C and 1 MPa of H2via α-angelica lactone as an intermediate. This could be the first report on switching the reaction path from 4-hydroxypentanoic acid to α-angelica lactone under very mild conditions. Incorporating Sn into MIL-101(Fe) enables the creation of abundant micro-pores less than 1 nm and Lewis acidic sites that stabilize Pt0 atoms. The ensemble of active Pt atoms and a Lewis acid can synergistically enhance adsorption of the CO bond and facilitate dehydrative cyclization of levulinic acid.

2.
Chem Sci ; 11(24): 6167-6182, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32953012

RESUMO

Liquid metals are a new emerging and rapidly growing class of materials and can be considered as efficient promoters and active phases for heterogeneous catalysts for sustainable processes. Because of low cost, high selectivity and flexibility, iron-based catalysts are the catalysts of choice for light olefin synthesis via Fischer-Tropsch reaction. Promotion of iron catalysts supported by carbon nanotubes with bismuth, which is liquid under the reaction conditions, results in a several fold increase in the reaction rate and in a much higher light olefin selectivity. In order to elucidate the spectacular enhancement of the catalytic performance, we conducted extensive in-depth characterization of the bismuth-promoted iron catalysts under the reacting gas and reaction temperatures by a combination of cutting-edge in situ techniques: in situ scanning transmission electron microscopy, near-atmospheric pressure X-ray photoelectron spectroscopy and in situ X-ray adsorption near edge structure. In situ scanning transmission electron microscopy conducted under atmospheric pressure of carbon monoxide at the temperature of catalyst activation showed iron sintering proceeding via the particle migration and coalescence mechanism. Catalyst activation in carbon monoxide and in syngas leads to liquid bismuth metallic species, which readily migrate over the catalyst surface with the formation of larger spherical bismuth droplets and iron-bismuth core-shell structures. In the working catalysts, during Fischer-Tropsch synthesis, metallic bismuth located at the interface of iron species undergoes continuous oxidation and reduction cycles, which facilitate carbon monoxide dissociation and result in the substantial increase in the reaction rate.

3.
Angew Chem Int Ed Engl ; 55(15): 4725-8, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26961855

RESUMO

The direct synthesis of lower (C2 to C4) olefins, key building-block chemicals, from syngas (H2/CO), which can be derived from various nonpetroleum carbon resources, is highly attractive, but the selectivity for lower olefins is low because of the limitation of the Anderson-Schulz-Flory distribution. We report that the coupling of methanol-synthesis and methanol-to-olefins reactions with a bifunctional catalyst can realize the direct conversion of syngas to lower olefins with exceptionally high selectivity. We demonstrate that the choice of two active components and the integration manner of the components are crucial to lower olefin selectivity. The combination of a Zr-Zn binary oxide, which alone shows higher selectivity for methanol and dimethyl ether even at 673 K, and SAPO-34 with decreased acidity offers around 70% selectivity for C2-C4 olefins at about 10% CO conversion. The micro- to nanoscale proximity of the components favors the lower olefin selectivity.

4.
Angew Chem Int Ed Engl ; 54(15): 4553-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25683326

RESUMO

Selectivity control is a challenging goal in Fischer-Tropsch (FT) synthesis. Hydrogenolysis is known to occur during FT synthesis, but its impact on product selectivity has been overlooked. Demonstrated herein is that effective control of hydrogenolysis by using mesoporous zeolite Y-supported cobalt nanoparticles can enhance the diesel fuel selectivity while keeping methane selectivity low. The sizes of the cobalt particles and mesopores are key factors which determine the selectivity both in FT synthesis and in hydrogenolysis of n-hexadecane, a model compound of heavier hydrocarbons. The diesel fuel selectivity in FT synthesis can reach 60 % with a CH4 selectivity of 5 % over a Na-type mesoporous Y-supported cobalt catalyst with medium mean sizes of 8.4 nm (Co particles) and 15 nm (mesopores). These findings offer a new strategy to tune the product selectivity and possible interpretations of the effect of cobalt particle size and the effect of support pore size in FT synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...