Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558268

RESUMO

Even though Fe2O3 is reported as the electron-transporting layer (ETL) in perovskite solar cells (PSCs), its fabrication and defects limit its performance. Herein, we report a Fe2O3 ETL prepared from FeCl3 solution with a dopant Fe3O4 nanoparticle modification. It is found that the mixed solution can reduce the defects and enhance the performance of Fe2O3 ETL, contributing to improved electron transfer and suppressed charge recombination. Consequently, the best efficiency is improved by more than 118% for the optimized device. The stability efficiency of the Fe2O3-ETL-based device is nearly 200% higher than that of the TiO2-ETL-based device after 7 days measurement under a 300 W Xe lamp. This work provides a facile method to fabricate environmentally friendly, high-quality Fe2O3 ETL for perovskite photovoltaic devices and provides a guide for defect passivation research.

2.
ACS Appl Mater Interfaces ; 14(9): 11264-11272, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35171576

RESUMO

An effective combination of smart materials plays an important role in charge transfer and separation for high photoelectric conversion efficiency (PCE) and stable solar cells. Black phosphorus quantum dots (BPQDs) have been revealed as a direct band gap semiconductor with ultrahigh conductivity, which have been explored in the present work as an additive component to a precursor solution of SnO2 nanoparticles that can effectively improve the performance of SnO2 electron transport layer (ETL)-based perovskite solar cells. Such a device can yield a high PCE of 21% with the SnO2/BPQDs mixed ETL, which is higher than those of perovskite solar cells based on SnO2 single layer (18.2%), BPQDs/SnO2 bilayer (19.5%), and SnO2/BPQDs bilayer (20.5%) samples. The mixed samples still possess good stability of more than 90% efficiency after 1000 h under AM 1.5G lamp irradiation and negligible hysteresis. It is found that the strong interaction of BPQDs with SnO2 can not only modify the defects inherent to the SnO2 layer but also inhibit the oxidation of BPQDs. This work provides a promising functional material for SnO2 ETL-based perovskite solar cells and proves that the BPQD-based modification strategy is useful for designing other solar cells with high performance.

3.
Adv Sci (Weinh) ; 5(3): 1700614, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29593964

RESUMO

In the planar perovskite solar cells (PSCs), the electron transport layer (ETL) plays a critical role in electron extraction and transport. Widely utilized TiO2 ETLs suffer from the low conductivity and high surface defect density. To address these problems, for the first time, two types of ETLs based on TiO2 phase junction are designed and fabricated distributed in the opposite space, namely anatase/rutile and rutile/anatase. The champion efficiency of PSCs based on phase junction ETL is over 15%, which is much higher than that of cells with single anatase (9.8%) and rutile (11.8%) TiO2 as ETL. The phase junction based PSCs also demonstrated obviously reduced hysteresis. The enhanced performance is discussed and mainly ascribed to the excellent capability of carrier extraction, defect passivation, and reduced recombination at the ETL/perovskite interface. This work opens a new phase junction ETL strategy toward interfacial energy band manipulation for improved PSC performance.

4.
Small ; 13(38)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28834132

RESUMO

In planar perovskite solar cells, it is vital to engineer the extraction and recombination of electron-hole pairs at the electron transport layer/perovskite interface for obtaining high performance. This study reports a novel titanium oxide (TiO2 ) bilayer with different Fermi energy levels by combing atomic layer deposition and spin-coating technique. Energy band alignments of TiO2 bilayer can be modulated by controlling the deposition order of layers. The TiO2 bilayer based perovskite solar cells are highly efficient in carrier extraction, recombination suppression, and defect passivation, and thus demonstrate champion efficiencies up to 16.5%, presenting almost 50% enhancement compared to the TiO2 single layer based counterparts. The results suggest that the bilayer with type II band alignment as electron transport layers provides an efficient approach for constructing high-performance planar perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...