Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765468

RESUMO

Islands offer exclusive prisms for an experimental investigation of biodiversity x ecosystem function interplay. Given that species in upper trophic layers, e.g., arthropod predators, experience a comparative disadvantage on small, isolated islands, such settings can help to clarify how predation features within biotic resistance equations. Here, we use observational and manipulative studies on a chain of nine Indonesian islands to quantify predator-mediated biotic resistance against the cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) and the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Across island settings, a diverse set of generalist lacewing, spider and ladybeetle predators aggregates on P. manihoti infested plants, attaining max. (field-level) abundance levels of 1.0, 8.0 and 3.2 individuals per plant, respectively. Though biotic resistance-as imperfectly defined by a predator/prey ratio index-exhibits no inter-island differences, P. manihoti population regulation is primarily provided through an introduced monophagous parasitoid. Meanwhile, resident predators, such as soil-dwelling ants, inflict apparent mortality rates up to 100% for various S. frugiperda life stages, which translates into a 13- to 800-fold lower S. frugiperda survivorship on small versus large islands. While biotic resistance against S. frugiperda is ubiquitous along the island chain, its magnitude differs between island contexts, seasons and ecological realms, i.e., plant canopy vs. soil surface. Hence, under our experimental context, generalist predators determine biotic resistance and exert important levels of mortality even in biodiversity-poor settings. Given the rapid pace of biodiversity loss and alien species accumulation globally, their active conservation in farmland settings (e.g., through pesticide phasedown) is pivotal to ensuring the overall resilience of production ecosystems.

2.
Sci Total Environ ; 742: 140598, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629272

RESUMO

Pesticide lifecycle management encompasses a range of elements from legislation, regulation, manufacturing, application, risk reduction, monitoring, and enforcement to disposal of pesticide waste. A survey was conducted in 2017-2018 to describe the contemporary global status of pesticide lifecycle management, to identify where the gaps are found. A three-tiered questionnaire was distributed to government entities in 194 countries. The response rate was 29%, 27% and 48% to the first, second and third part of the questionnaire, respectively. The results showed gaps for most of the selected indicators of pesticide management, suggesting that pesticide efficacy and safety to human health and the environment are likely being compromised at various stages of the pesticide lifecycle, and at varying degrees across the globe. Low-income countries generally had the highest incidence of gaps. Particular shortcomings were deficiencies in pesticide legislation, inadequate capacity for pesticide registration, protection against occupational exposure to pesticides, consumer protection against residues in food, and environmental protection against pesticide contamination. Policy support for, and implementation of, pesticide use-reduction strategies such as integrated pest management and integrated vector management has been inadequate across regions. Priority actions for structural improvement in pesticide lifecycle management are proposed, including pesticide use-reduction strategies, targeted interventions, and resource mobilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...