Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(17): 9766-9774, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423478

RESUMO

Various physical structures have improved light-harvesting and power-conversion efficiency in organic photovoltaic devices, and optical simulations have supported the improvement of device characteristics. Herein, we experimentally investigated how microlens arrays manipulate light propagation in microlens films and material stacks for organic photovoltaics to understand the influence of the constituent materials and sizes of the microlens. As materials to fabricate a microlens array, poly(dimethylsiloxane) and Norland Optical Adhesive 63 were adopted. The poly(dimethylsiloxane) microlens array exhibited higher total transmittance and higher diffuse transmittance, further enhancing the effective optical path and light extinction in material stacks for organic photovoltaics. This resulted in more current generation in an organic photovoltaic device with a poly(dimethylsiloxane) microlens array than in a Norland Optical Adhesive 63 microlens array. The sizes of the microlenses were controlled from 0.5 to 10 µm. The optical characteristics of microlens array films and material stacks with microlenses generally increased with size of the microlens, leading to a 10.6% and 16.0% improvement in the light extinction and power-conversion efficiency, respectively. In addition, electron and current generation in material stacks for organic photovoltaics were calculated from light extinction. The theoretical current generation matched well with experimental values derived from organic photovoltaic devices. Thus, the optical characterization of physical structures helps to predict how much more current can be generated in organic photovoltaic cells with a certain physical structure; it can also be used for screening the physical structures of organic photovoltaic cells.

2.
Materials (Basel) ; 13(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882866

RESUMO

Wrinkles attract significant attention due to their ability to enhance the mechanical and optical characteristics of various optoelectronic devices. We report the effect of the plasma gas type, power, flow rate, and treatment time on the wrinkle features. When an optical adhesive was treated using a low-pressure plasma of oxygen, argon, and nitrogen, the oxygen and argon plasma generated wrinkles with the lowest and highest wavelengths, respectively. The increase in the power of the nitrogen and oxygen plasma increased the wavelengths and heights of the wrinkles; however, the increase in the power of the argon plasma increased the wavelengths and decreased the heights of the wrinkles. Argon molecules are heavier and smaller than nitrogen and oxygen molecules that have similar weights and sizes; moreover, the argon plasma comprises positive ions while the oxygen and nitrogen plasma comprise negative ions. This resulted in differences in the wrinkle features. It was concluded that a combination of different plasma gases could achieve exclusive control over either the wavelength or the height and allow a thorough analysis of the correlation between the wrinkle features and the characteristics of the electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...