Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 28(7): 374, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878070

RESUMO

OBJECTIVE: We aimed to evaluate changes in the zygomatic pillar during orthodontic treatment involving premolar extraction, analyze the effects of maxillary first molar movement on zygomatic pillar remodeling, and examine occlusal characteristics and stress distribution after remodeling. METHODS: Twenty-five patients who underwent premolar extraction were included in the study. The zygomatic pillar measurement range was defined, and cross-sectional areas, surface landmark coordinates, alveolar and cortical bone thicknesses, and density changes were assessed using Mimics software based on the cone-beam computed tomography scans taken before (T0) and after the treatment (T1). Multiple linear regression analysis was performed to determine the correlation between changes in the zygomatic pillar and maxillary first molar three-dimensional (3D) movement and rotation. Additionally, the correlation between pillar remodeling and occlusal characteristics was analyzed by Teetester. Pre- and post-reconstruction 3D finite element models were constructed and loaded with an average occlusal force of two periods. RESULTS: The morphological and structural remodeling of the zygomatic pillar after orthodontic treatment involving premolar extraction showed a decreased cross-sectional area of the lower segment of the zygomatic pillar. The zygomatic process point moved inward and backward, whereas the zygomatico-maxillary suture point moved backward. The thicknesses of the zygomatic pillar alveolar and cortical bones were thinner, and reduced alveolar bone density was observed. Simultaneously, the movement and angle change of the maxillary first molar could predict zygomatic pillar reconstruction to a certain extent. With decreasing the total occlusal force and the occlusal force of the first molar, occlusal force distribution was more uniform. With zygomatic pillar remodeling, occlusal stress distribution in the zygomatic alveolar ridge decreased, and occlusal stress was concentrated at the junction of the vertical and horizontal parts of the zygomatic bone and the posterior part of the zygomatic arch. CONCLUSIONS: Orthodontic treatment involving premolar extraction led to zygomatic pillar remodeling, making it more fragile than before and reducing the occlusal force of the maxillary first molar and the entire dentition with stress concentrated in weak areas. CLINICAL RELEVANCE: No other study has focused on the effects of orthodontics on pillar structures. The present study indicates that the mesial movement of the maxillary first molar weakened the zygomatic pillar and reduced occlusal function, thereby providing insights for inserting anchorage screws and facial esthetics.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Análise de Elementos Finitos , Dente Molar , Técnicas de Movimentação Dentária , Zigoma , Humanos , Técnicas de Movimentação Dentária/métodos , Feminino , Masculino , Dente Pré-Molar , Maxila , Extração Dentária , Imageamento Tridimensional , Adolescente , Remodelação Óssea/fisiologia , Análise do Estresse Dentário , Adulto , Adulto Jovem
2.
Int J Nanomedicine ; 18: 813-827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814856

RESUMO

Introduction: Antibacterial photodynamic treatment (aPDT) has indispensable significance as a means of treating periodontal disorders because of its extraordinary potential for killing pathogenic bacteria by generating an overpowering amount of reactive oxygen species (ROS). The elevated ROS that may result from the antibacterial treatment procedure, however, could exert oxidative pressure inside periodontal pockets, causing irreparable damage to surrounding tissue, an issue that has severely restricted its medicinal applications. Accordingly, herein, we report the use of black phosphorus nanosheets (BPNSs) that can eliminate the side effects of ROS-based aPDT as well as scavenge ROS to produce an antibacterial effect. Methods: The antibacterial effect of ICG/aPDT was observed by direct microscopic colony counting. A microplate reader and confocal microscope enabled measurements of cell viability and the quantification of ROS fluorescence. BPNS administration regulated the oxidative environment. IL-1ß, IL-6, TNF-α, IL-10, TGF-ß, and Arg-1 mRNA expression levels were used to assess the inflammatory response after BPNS treatment. In vivo, the efficacy of the combination of BPNSs and ICG/aPDT was evaluated in rats with periodontal disease by histomorphometric and immunohistochemical analyses. Results: The CFU assay results verified the antibacterial effect of ICG/aPDT treatment, and ROS fluorescence quantification by CLSM indicated the antioxidative ability of the BPNSs. IL-1ß, IL-6, TNF-α, IL-10, TGF-ß, and Arg-1 mRNA expression levels were significantly decreased after BPNS treatment, confirming the in vitro anti-inflammatory effect of this nanomaterial. The histomorphometric and immunohistochemical analyses showed that the levels of proinflammatory factors decreased, suggesting that the BPNSs had anti-inflammatory effects in vivo. Conclusion: Treatment with antioxidative BPNSs gives new insights into future anti-inflammatory therapies for periodontal disease and other infection-related inflammatory illnesses and provides an approach to combat the flaws of aPDT.


Assuntos
Doenças Periodontais , Periodontite , Fotoquimioterapia , Ratos , Animais , Fotoquimioterapia/métodos , Interleucina-10 , Periodontite/microbiologia , Fator de Necrose Tumoral alfa , Interleucina-6 , Espécies Reativas de Oxigênio , Doenças Periodontais/tratamento farmacológico , Antibacterianos/farmacologia , Fator de Crescimento Transformador beta , RNA Mensageiro , Fármacos Fotossensibilizantes/farmacologia
3.
Front Bioeng Biotechnol ; 11: 1076240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815898

RESUMO

Oxidative stress is closely linked to the etiology of temporomandibular joint osteoarthritis. (TMJ-OA) and is an important therapeutic target. Cerium oxide nanoparticles (CNPs) have been broadly studied owing to their powerful antioxidant properties and potential preventive and therapeutic effects against chronic diseases. The current study was designed to explore the protective effects of CNPs on the progression of TMJ-OA and their potential mechanisms. We detected the ability of CNPs to eliminate reactive oxygen species (ROS) in chondrocytes. Moreover, their protective effects on chondrocytes were detected in the level of gene and protein. Furthermore, TUNEL assay, histology and safranin O-fast green staining were used to detect the beneficial effects of CNPs on cartilage explants. The mechanism of CNPs, protecting condylar cartilage by reducing inflammation, was further explored by knocking down the Nuclear factor-erythroid 2-related factor (Nrf2) gene. CNPs could reduce the ROS levels in chondrocytes and cartilage explants and reverse the IL-1ß-induced imbalance of cartilage matrix metabolism and apoptosis. The protective effects of CNPs on cartilage were lost after key antioxidant factors including Nrf2 and heme-oxygenase 1(HO-1) were significantly reduced. In conclusion, this study demonstrated for the first time that activating the Nrf2/HO-1 signaling pathway by CNPs might have therapeutic potential for TMJ-OA.

4.
Oral Dis ; 29(7): 2816-2826, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36577689

RESUMO

OBJECTIVES: Human-derived pulp stem cells play key roles during dentinogenesis. Erythropoietin is reportedly involved in osteoblastogenesis and facilitates bone formation. However, the mechanism is still unknown. This research was to study the potential of erythropoietin in enhancing odontoblastic differentiation of human-derived pulp stem cells and to determine the underlying mechanism. METHODS: The human-derived pulp stem cells were treated with erythropoietin, EphB4 inhibitor, and MAPK inhibitors, and the odontoblastic differentiation was measured by ALP staining, ALP activity assay, alizarin red S staining, and their quantitative analysis, and RT-qPCR of DSPP, DMP1, OCN, and RUNX2. The direct pulp capping model was established to evaluate the formation of tertiary dentin after treatment with erythropoietin. Western blot assay was conducted to assess relevant protein expressions in the phosphorylated EphB4 and MAPK pathway. RESULTS: The results showed that erythropoietin promoted odontoblastic differentiation of human-derived pulp stem cells at 20 U/ml. Erythropoietin induced tertiary dentin formation in vivo. The potential mechanism of this was upregulating phosphorylated EphB4 and phosphorylated MAPK; furthermore, this effect could be decreased by EphB4 inhibitors, which inhibited MAPK phosphorylation. Blockage of MAPK pathways attenuated human-derived pulp stem cells' odontoblastic differentiation, suggesting that MAPK pathways are involved. CONCLUSION: Erythropoietin induced tertiary dentin formation in vivo. And erythropoietin enhanced human-derived pulp stem cells' odontoblastic differentiation via the EphB4-mediated MAPK signaling pathway.


Assuntos
Eritropoetina , Transdução de Sinais , Humanos , Sistema de Sinalização das MAP Quinases , Diferenciação Celular , Odontoblastos , Polpa Dentária , Eritropoetina/farmacologia , Eritropoetina/metabolismo , Células-Tronco , Células Cultivadas
5.
BMC Oral Health ; 22(1): 616, 2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529715

RESUMO

BACKGROUND: Sleep is crucial for survival. Sleep deprivation causes ROS accumulation and, consequently, oxidative stress. The goal of the study was to evaluate gingival crevicular fluid (GCF) levels of the oxidative stress status hydrogen peroxide (H2O2), superoxide glutathione (GSH), and cellular oxidative damage marker malondialdehyde (MDA) in school-aged children and teenagers with insufficient sleep. METHODS: This study investigated sleep duration in 80 participants from two different developmental stages: school-aged children (6-13 years) and teenagers (14-17 years). GCF samples were obtained from all individuals, and samples were investigated to detect H2O2, GSH, and MDA levels using the micro method. RESULTS: Results reveal that GCF MDA and H2O2 in school-age children and teenagers with insufficient sleep were significantly higher than in children with sufficient sleep. GCF GSH with insufficient sleep was insignificantly lower than in children with sufficient sleep. There was no significant difference between school-age and teenage populations. CONCLUSION: Sleep deprivation causes increased levels of oxidative stress in gingival crevicular fluid, and adequate sleep is essential for maintaining redox balance.


Assuntos
Líquido do Sulco Gengival , Privação do Sono , Adolescente , Criança , Humanos , Peróxido de Hidrogênio , Oxirredução , Estresse Oxidativo
6.
Nanoscale ; 14(7): 2628-2637, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35088792

RESUMO

Periodontitis, an inflammatory disease of oxidative stress, occurs due to excess reactive oxygen species (ROS) contributing to cell and tissue damage which in turn leads to alveolar bone resorption as well as the destruction of other periodontal support tissues. With significant recent advances in nanomaterials, we considered a unique type of nanomaterials possessing enzyme-like characteristics (called nanozymes) for potential future clinical applications, especially in light of the increasing number of studies evaluating nanozymes in the setting of inflammatory diseases. Here, we introduced a therapeutic approach for the management of periodontitis utilizing an injection of cerium oxide nanoparticles (CeO2 NPs) in situ. In this study, our synthesized CeO2 NPs could act as ROS scavengers in the inflammatory microenvironment with ideal outcomes. In vitro and in vivo experiments provide strong evidence on the roles of CeO2 NPs in scavenging multiple ROS and suppressing ROS-induced inflammation reactions stimulated by lipopolysaccharides. Moreover, CeO2 NPs could inhibit the MAPK-NFκB signalling pathway to suppress inflammatory factors. In addition, the results from a rat periodontitis model demonstrate that CeO2 NPs could exhibit a remarkable capacity to attenuate alveolar bone resorption, decrease the osteoclast activity and inflammation, and consequently improve the restoration of destroyed tissues. Collectively, our present study underscores the potential of CeO2 NPs for application in the treatment of periodontitis, and provides valuable insights into the application of nanozymes in inflammatory diseases.


Assuntos
Cério , Nanopartículas , Animais , Cério/farmacologia , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo
7.
Oral Dis ; 28(1): 173-181, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33244805

RESUMO

OBJECTIVES: To develop and evaluate the performance of a deep learning system based on convolutional neural network (ConvNet) to detect dental caries from oral photographs. METHODS: 3,932 oral photographs obtained from 625 volunteers with consumer cameras were included for the development and evaluation of the model. A deep ConvNet was developed by adapting from Single Shot MultiBox Detector. The hard negative mining algorithm was applied to automatically train the model. The model was evaluated for: (i) classification accuracy for telling the existence of dental caries from a photograph and (ii) localization accuracy for locations of predicted dental caries. RESULTS: The system exhibited a classification area under the curve (AUC) of 85.65% (95% confidence interval: 82.48% to 88.71%). The model also achieved an image-wise sensitivity of 81.90%, and a box-wise sensitivity of 64.60% at a high-sensitivity operating point. The hard negative mining algorithm significantly boosted both classification (p < .001) and localization (p < .001) performance of the model by reducing false-positive predictions. CONCLUSIONS: The deep learning model is promising to detect dental caries on oral photographs captured with consumer cameras. It can be useful for enabling the preliminary and cost-effective screening of dental caries among large populations.


Assuntos
Aprendizado Profundo , Cárie Dentária , Algoritmos , Área Sob a Curva , Cárie Dentária/diagnóstico por imagem , Humanos , Redes Neurais de Computação
8.
Front Bioeng Biotechnol ; 10: 1081977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588945

RESUMO

Oxidative stress in periodontitis has emerged as one of the greatest barriers to periodontal tissue restoration. In this study, we synthesized controlled drug release nanoparticles (MitoQ@PssL NPs) by encasing mitoquinone (MitoQ; an autophagy enhancer) into tailor-made reactive oxygen species (ROS)-cleavable amphiphilic polymer nanoparticles (PssL NPs) to regulate the periodontitis microenvironment. Once exposed to reactive oxygen species, which were substantially overproduced under oxidative stress conditions, the ROS-cleavable PssL was disintegrated, promoting the release of the encapsulated MitoQ. The released mitoquinone efficiently induced mitophagy through the PINK1-Parkin pathway and successfully reduced oxidative stress by decreasing the amount of reactive oxygen species. With the gradual decrease in the reactive oxygen species level, which was insufficient to disintegrate PssL, the release of mitoquinone was reduced and eventually eliminated, which contributed to a redox homeostasis condition and facilitated the regeneration of periodontal tissue. MitoQ@PssL NPs have great potential in the treatment of periodontitis via microenvironment-controlled drug release, which will provide a new avenue for periodontal regeneration and diseases related to imbalanced redox metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...