Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955132

RESUMO

Electron backscatter diffraction and cathodoluminescence are complementary scanning electron microscopy modes widely used in the characterisation of semiconductor films, respectively revealing the strain state of a crystalline material and the effect of this strain on the light emission from the sample. Conflicting beam, sample and detector geometries have meant it is not generally possible to acquire the two signals together during the same scan. Here, we present a method of achieving this simultaneous acquisition, by collecting the light emission through a transparent sample substrate. We apply this combination of techniques to investigate the strain field and resultant emission wavelength variation in a deep-ultraviolet micro-LED. For such compatible samples, this approach has the benefits of avoiding image alignment issues and minimising beam damage effects.

2.
Biomed Opt Express ; 14(3): 1107-1118, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950244

RESUMO

A fluorescence sensor with the capability for spatially multiplexed measurements utilizing smartphone detection is presented. Bioconjugated quantum dots are used as the fluorescent tag and are excited using a blue-emitting microLED (µLED). The 1-dimensional GaN µLED array is butt-coupled to one edge of the glass slide to take advantage of total internal reflection fluorescence (TIRF) principles. The bioassays on the top surface of the glass waveguide are excited and the resultant fluorescence is detected with the smartphone. The red, green, and blue channels of the digital image are utilized to spectrally separate the excitation light from the fluorescence for analysis. Using a biotin-functionalized glass slide as proof of principle, we have shown that streptavidin conjugated quantum dots can be detected down to a concentration of 8 nM.

3.
Opt Express ; 30(26): 46811-46821, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558623

RESUMO

We demonstrate the use of deep ultraviolet (DUV) micro-light-emitting diodes (LEDs) for long-distance line-of-sight optical wireless communications. With a single 285 nm-emitting micro-LED, we have respectively achieved data rates greater than 6.5 Gb/s at a distance of 10 m and 4 Gb/s at 60 m. Moreover, we obtained >1 Gb/s data rates at a distance of 116 m. To our knowledge, these results are the highest data rates at such distances thus far reported using DUV micro-LEDs and the first demonstration of Gb/s communication at >100 m using any micro-LED-based transmitter.

4.
Appl Opt ; 60(19): 5615-5622, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263853

RESUMO

We propose and experimentally demonstrate a vertical fiber interfacing interleaved angled multimode interference (MMI) coupler for wavelength-division multiplexing (WDM) applications. This four-channel WDM device comprises two 1×2 angled MMI couplers and a bidirectional grating-based Mach-Zehnder interferometer (MZI) structure. In the MZI optical interleaver, the uniform bidirectional grating functions as both the perfectly vertical grating coupler and the 3 dB power splitter. Benefitting from the flat-top coupling spectrum of the grating coupler, a high-uniformity wavelength-division (de)multiplexing can be achieved with a simulated insertion loss of 3.15-3.36 dB (the nonuniformity of 0.22 dB). The angled MMIs (AMMIs) are designed and optimized using the eigenmode expansion method. For wavelength matching between the MZI and AMMIs, the circuit simulation model of the interleaved AMMI is built by importing the S-parameter matrices of all the optical components extracted from the physical level simulations. The device was fabricated using standard CMOS technology and all the features were patterned with the 193-nm deep-UV lithography. Experimental results obtained without thermal tuning are in good agreement with the simulation results. The device exhibits an insertion loss of 4.5-4.65 dB (nonuniformity of 0.15 dB), channel spacing of 10 nm, and cross talk of -(21.62-26)dB.

5.
Neurophotonics ; 6(3): 035010, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31528655

RESUMO

We present an electrically addressable optrode array capable of delivering light to 181 sites in the brain, each providing sufficient light to optogenetically excite thousands of neurons in vivo, developed with the aim to allow behavioral studies in large mammals. The device is a glass microneedle array directly integrated with a custom fabricated microLED device, which delivers light to 100 needle tips and 81 interstitial surface sites, giving two-level optogenetic excitation of neurons in vivo. Light delivery and thermal properties are evaluated, with the device capable of peak irradiances > 80 mW / mm 2 per needle site. The device consists of an array of 181 80 µ m × 80 µ m 2 microLEDs, fabricated on a 150 - µ m -thick GaN-on-sapphire wafer, coupled to a glass needle array on a 150 - µ m thick backplane. A pinhole layer is patterned on the sapphire side of the microLED array to reduce stray light. Future designs are explored through optical and thermal modeling and benchmarked against the current device.

6.
Opt Express ; 25(8): A338-A345, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437920

RESUMO

We report a CMOS integrated micro-LED array capable of generating discrete optical output power levels. A 16 × 16 array of individually addressable pixels are on-off controlled through parallel logic signals. With carefully selected groups of LEDs driven together, signals suitable for discrete transmission schemes are produced. The linearity of the device is assessed, and data transmission using pulse amplitude modulation (PAM) and orthogonal frequency division multiplexing (OFDM) is performed. Error-free transmission at a symbol rate of 100 MSamples/s is demonstrated with 4-PAM, yielding a data rate of 200 Mb/s. For 8-PAM, encoding is required to overcome the baseline wander from the receiver, reducing the data rate to 150 Mb/s. We also present an experimental proof-of-concept demonstration of discrete-level OFDM, achieving a spectral efficiency of 3.96 bits/s/Hz.

7.
Molecules ; 22(2)2017 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-28218704

RESUMO

We demonstrate a novel approach to control ß-phase content generated in poly(9,9-dioctylfluorene) (PFO) films. A very small amount of paraffin oil was used as the additive to the PFO solution in toluene. The ß-phase fraction in the spin-coated PFO films can be modified from 0% to 20% simply by changing the volume percentage of paraffin oil in the mixed solution. Organic light emitting diodes (OLEDs) and amplified spontaneous emission (ASE) study confirmed low ß-phase fraction promise better OLEDs device, while high ß-phase fraction benefits ASE performance.


Assuntos
Fluorenos/química , Modelos Químicos , Polímeros/química
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 571-6, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-27209771

RESUMO

Based on inverted surface plasmon resonance (ISPR) a novel biosensor consisting of Ge20Ga5Sb10S65-palladium-graphene layer-biomolecule layer is proposed. The refractive index of biomolecule layer alters as biomolecule experience interactions, thus leading to a shift of ISPR angle. On this basis, the spectrum output of sensor is derived by transfer matrix method. The sensitivity, the resolution, the dynamic detection range and the signal to noise ratio of the presented sensor are discussed and compared with the performance of traditional sensors. Moreover, the influences of grapheme layer thickness on sensors are analyzed with comparative study. Finally, near infrared is used as the incident light of the presented sensor. The results show that, the best thickness of grapheme layer is monolayer; the peak intensity of the ISPR reflection is about 80%~90% of intensity of incident light, guaranteeing a high signal to noise ratio; In the visible light, when λ = 632.8 nm, the presented sensor is 1.9 times the resolution of the sensor based on SiO2 coupling inverted surface plasmon resonance, is 3. 5 times the resolution of the sensor based on surface plasmon resonance(SPR), and is 2 times the dynamic detection range of pre-existing biosensor based on SPR. The application of Ge20Ga5Sb10S65 prism extends the detection light wavelength from the visible region to the near infrared region. When λ = 1,000 nm, the sensor is 3-4 times of the sensor in visible region. The research greatly contributes to the realization and application of biosensor based on inverted surface plasmon resonance.


Assuntos
Técnicas Biossensoriais , Dióxido de Silício , Ressonância de Plasmônio de Superfície , Grafite
9.
Opt Express ; 24(1): 699-707, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832299

RESUMO

Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26074778

RESUMO

Optogenetics has proven to be a revolutionary technology in neuroscience and has advanced continuously over the past decade. However, optical stimulation technologies for in vivo need to be developed to match the advances in genetics and biochemistry that have driven this field. In particular, conventional approaches for in vivo optical illumination have a limitation on the achievable spatio-temporal resolution. Here we utilize a sapphire-based microscale gallium nitride light-emitting diode (µLED) probe to activate neocortical neurons in vivo. The probes were designed to contain independently controllable multiple µLEDs, emitting at 450 nm wavelength with an irradiance of up to 2 W/mm(2). Monte-Carlo stimulations predicted that optical stimulation using a µLED can modulate neural activity within a localized region. To validate this prediction, we tested this probe in the mouse neocortex that expressed channelrhodopsin-2 (ChR2) and compared the results with optical stimulation through a fiber at the cortical surface. We confirmed that both approaches reliably induced action potentials in cortical neurons and that the µLED probe evoked strong responses in deep neurons. Due to the possibility to integrate many optical stimulation sites onto a single shank, the µLED probe is thus a promising approach to control neurons locally in vivo.


Assuntos
Óxido de Alumínio/metabolismo , Luz , Neocórtex/citologia , Neurônios/fisiologia , Optogenética , Potenciais de Ação , Aminoácidos/metabolismo , Animais , Channelrhodopsins , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Método de Monte Carlo , Estimulação Luminosa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Opt Lett ; 40(6): 930-3, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768149

RESUMO

A monolithic diamond Raman laser is reported. It utilizes a 13-mm radius of curvature lens etched onto the diamond surface and dielectric mirror coatings to form a stable resonator. The performance is compared to that of a monolithic diamond Raman laser operating in a plane-plane cavity. On pumping with a compact Q-switched laser at 532 nm (16 µJ pulse energy; 1.5 ns pulse duration; 10 kHz repetition-rate; M2<1.5), laser action was observed at the first, second, and third Stokes wavelengths (573 nm, 620 nm and 676 nm, respectively) in both cases. For the microlens cavity, a conversion efficiency of 84% was achieved from the pump to the total Raman output power, with a slope efficiency of 88%. This compares to a conversion efficiency of 59% and a slope efficiency of 74% for the plane-plane case. Total Raman output powers of 134 and 96 mW were achieved for the microlens and plane-plane cavities, respectively.

12.
Opt Express ; 22(2): 1372-80, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515144

RESUMO

A compact optoelectronic tweezers system for combined cell manipulation and analysis is presented. CMOS-controlled gallium nitride micro-LED arrays are used to provide simultaneous spatio-temporal control of dielectrophoresis traps within an optoelectronic tweezers device and fluorescence imaging of contrasting dye labelled cells. This capability provides direct identification, selection and controlled interaction of single T-lymphocytes and dendritic cells. The trap strength and profile for two emission wavelengths of micro-LED array have been measured and a maximum trapping force of 13.1 and 7.6 pN was achieved for projected micro-LED devices emitting at λmax 520 and 450 nm, respectively. A potential application in biological research is demonstrated through the controlled interaction of live immune cells where there is potential for this method of OET to be implemented as a compact device.


Assuntos
Separação Celular/instrumentação , Células Dendríticas/citologia , Células Dendríticas/fisiologia , Microscopia de Fluorescência/instrumentação , Pinças Ópticas , Linfócitos T/citologia , Linfócitos T/fisiologia , Animais , Células Cultivadas , Eletrônica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Camundongos Endogâmicos C57BL , Micromanipulação/instrumentação
13.
J Biomed Opt ; 18(11): 111402, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23788259

RESUMO

We present an optoelectrical device capable of in vitro optical stimulation and electrophysiological recording. The device consists of an array of micropixellated InGaN light-emitting diodes coupled to a custom-made ultrathin planar microelectrode array. Cells can be cultured directly on the chip for short- and long-term electrophysiological experiments. To show the functionality of the device, we transfected a cardiomyocyte-like cell line (HL-1) with a light-sensitive protein channelrhodopsin. We monitored action potentials of individual, spontaneously beating, HL-1 cells growing on the chip by extracellular electrical recordings. On-chip optical stimulation was demonstrated by triggering network activity in a confluent HL-1 cell culture and visualized by calcium imaging. We see the potential of our system for electrophysiological experiments with optogenetically modified cells. Optical stimulation can be performed directly on the chip without additional optical components or external light sources.


Assuntos
Eletrofisiologia/instrumentação , Análise em Microsséries/instrumentação , Imagem Molecular/instrumentação , Animais , Cálcio/metabolismo , Linhagem Celular , Eletrofisiologia/métodos , Humanos , Luz , Camundongos , Análise em Microsséries/métodos , Microeletrodos , Imagem Molecular/métodos , Optogenética , Rodopsina/genética , Rodopsina/metabolismo , Transfecção
14.
Opt Lett ; 38(6): 992-4, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23503284

RESUMO

Within optogenetics there is a need for compact light sources that are capable of delivering light with excellent spatial, temporal, and spectral resolution to deep brain structures. Here, we demonstrate a custom GaN-based LED probe for such applications and the electrical, optical, and thermal properties are analyzed. The output power density and emission spectrum were found to be suitable for stimulating channelrhodopsin-2, one of the most common light-sensitive proteins currently used in optogenetics. The LED device produced high light intensities, far in excess of those required to stimulate the light-sensitive proteins within the neurons. Thermal performance was also investigated, illustrating that a broad range of operating regimes in pulsed mode are accessible while keeping a minimum increase in temperature for the brain (0.5°C). This type of custom device represents a significant step forward for the optogenetics community, allowing multiple bright excitation sites along the length of a minimally invasive neural probe.


Assuntos
Microtecnologia/instrumentação , Neurônios/citologia , Dispositivos Ópticos , Optogenética/instrumentação , Temperatura , Encéfalo/citologia , Eletricidade , Gálio
15.
Opt Lett ; 37(24): 5160-2, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23258038

RESUMO

In this work, an organic composite polymer random laser (RL) operating underwater has been studied. The RL structure used in the test is a rod-shaped composite, formed by a mixture of an organic green light-emitting polymer and a UV transparent polymer matrix. RL action was sustained by both the multiple scattering and whispering-gallery-mode effect. The demonstration of RL action and the test of its operation lifetime in such an organic composite RL operating in water suggest the feasibility of its promising future applications in areas of underwater optical communications and/or remote optical sensing.

16.
Colloids Surf B Biointerfaces ; 89: 126-32, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21992797

RESUMO

We demonstrate a single-step method for the generation of collagen and poly-l-Lysine (PLL) micropatterns on a poly(ethylene glycol) (PEG) functionalized glass surface for cell based assays. The method involves establishing a reliable silanization method to create an effective non-adhesive PEG layer on glass that inhibits cell attachment, followed by the spotting of collagen or PLL solutions using non-contact piezoelectric printing. We show for the first time that the spotted protein micropatterns remain stable on the PEG surface even after extensive washing, thus significantly simplifying protein pattern formation. We found that adherence and spreading of NIH-3T3 fibroblasts was confined to PLL and collagen areas of the micropatterns. In contrast, primary rat hepatocytes adhered and spread only on collagen micropatterns, where they formed uniform, well defined functionally active cell arrays. The differing affinity of hepatocytes and NIH-3T3 fibroblasts for collagen and PLL patterns was used to develop a simple technique for creating a co-culture of the two cell types. This has the potential to form structured arrays that mimic the in vivo hepatic environment and is easily integrated within a miniaturized analytical platform for developing high throughput toxicity analysis in vitro.


Assuntos
Hepatócitos/citologia , Animais , Camundongos , Células NIH 3T3
17.
Opt Express ; 19(15): 14182-7, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21934781

RESUMO

In this paper, the self-consistent solution of Schrödinger-Poisson equations was realized to estimate the radiative recombination coefficient and the lifetime of a single blue light InGaN/GaN quantum well (QW). The results revealed that the recombination rate was not in proportion to the total injected carriers, and thus the Bnp item was not an accurate method to analyze the recombination process. Carrier screening and band filling effects were also investigated, and an extended Shockley-Read-Hall coefficient A(kt) with a statistical weight factor due to the carrier distributions in real and phase space of the QW was proposed to estimate the total nonradative current loss including carrier nonradiative recombination, leakage and spillover to explain the efficiency droop behaviors. Without consideration of the Auger recombination, the blue shift of the electroluminescence spectrum, light output power and efficiency droop curves as a function of injected current were all investigated and compared with the experimental data of a high brightness blue light InGaN/GaN multiple QWs light emitting diode to confirm the reliability of our theoretical hypothesis.

18.
Appl Opt ; 50(19): 3233-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21743523

RESUMO

Experimentally measured optical properties of photonic crystal LEDs are reported here. Photonic crystal and photonic quasi-crystal structures were fabricated on GaN epilayer LED wafer material using both direct-write electron beam lithography and nanoimprint lithography. Some of these structures were processed to make finished LEDs. Both electroluminescence and photoluminescence measurements were performed on these structures. Devices were characterized for their current-voltage characteristics, emission spectra, far-field emission pattern, and angular emission pattern. These results are useful for fabricating photonic crystal LEDs and assessing their operational properties.

19.
Opt Express ; 19(3): 2720-8, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369093

RESUMO

A novel, miniaturized optoelectronic tweezers (OET) system has been developed using a CMOS-controlled GaN micro-pixelated light emitting diode (LED) array as an integrated micro-light source. The micro-LED array offers spatio-temporal and intensity control of the emission pattern, enabling the creation of reconfigurable virtual electrodes to achieve OET. In order to analyse the mechanism responsible for particle manipulation in this OET system, the average particle velocity, electrical field and forces applied to the particles were characterized and simulated. The capability of this miniaturized OET system for manipulating and trapping multiple particles including polystyrene beads and live cells has been successfully demonstrated.


Assuntos
Gálio/química , Iluminação/instrumentação , Pinças Ópticas , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
20.
Opt Express ; 19(4): 2996-3003, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369124

RESUMO

We report random laser action in a system where optical amplification is provided by colloidal quantum dots (CQDs). This system is obtained by depositing from solution CdSe/ZnS core-shell CQDs into rough micron-scale grooves fabricated on the surface of a glass substrate. The combination of CQD random packing and of disordered structures in the glass groove enables gain and multiple scattering. Upon optical excitation, random laser action is triggered in the system above a 25-mJ/cm2 threshold. Single-shot spectra were recorded to study the emission spectral characteristics and the results show the stability of the laser mode positions and the dominance of the modes close to the material gain maximum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...