Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1337407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264190

RESUMO

Recently, owing to the good calcium bioavailability, peptide-calcium chelates made of various foods have been emerging. Hericium erinaceus, an edible fungus, is rich in proteins with a high proportion of calcium-binding amino acids. Thus, mushrooms serve as a good source to prepare peptide-calcium chelates. Herein, the conditions for hydrolyzing Hericium erinaceus peptides (HP) with a good calcium-binding rate (CBR) were investigated, followed by the optimization of HP-calcium chelate (HP-Ca) preparation. Furthermore, the structure of the new chelates was characterized along with the evaluation of gastrointestinal stability and calcium absorption. Papain and a hydrolysis time of 2 h were selected for preparing Hericium erinaceus peptides, and the conditions (pH 8.5, temperature 55°C, time 40 min, and mass ratio of peptide/CaCl2 4:1) were optimal to prepare HP-Ca. Under this condition, the chelates contained 6.79 ± 0.13% of calcium. The morphology and energy disperse spectroscopy (EDS) analysis showed that HP-Ca was loose and porous, with an obvious calcium element signal. The ultraviolet-visible (UV) absorption and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that calcium possibly chelates to HP via interaction with free -COO- from acidic amino acids and C = O from amide. HP-Ca displayed good stability against stimulated gastrointestinal digestion. Moreover, HP-Ca significantly improved the calcium absorption by Caco-2 epithelial cells. Thus, HP-Ca is a promising Ca supplement with high calcium bioavailability.

2.
Front Nutr ; 9: 997514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091230

RESUMO

Yak milk casein (YMC) is the main protein in the yak milk. Peptides released from Yak milk casein (YMC) have multiple bioactivities, including anti-inflammation and immune-regulation, suggesting that these peptides might be able to inhibit cancer theoretically. However, the anti-cancer peptides from YMC have only been sparsely studied. Breast carcinoma is the most common carcinoma in women worldwide. Thus, the paper herein was to identify yak milk casein (YMC)-derived anti-breast cancer peptides via gel filtration, reversed phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) for the first time. The inhibitory effects of the hydrolysates on the cell viabilities, cell cycles and apoptosis of breast cancer cells were evaluated with a cck8 kit and a flow cytometry. The result showed that YMC hydrolysates (YMCH) obtained by united hydrolyzation with trypsin (3 h) and alkaline protease (3 h) displayed the highest cell viability inhibition rate for MCF7 (20.74 ± 1.39%) and MDA-MB-231 (26.73 ± 2.87%) cells. Three peptides were identified in the RP-HPLC subfraction F3-4, and a nonapeptide (TPVVVPPFL) showed the most potent inhibitory effects on both cancer cells and displayed good gastrointestinal stability. TPVVVPPFL could induce G2-M cell cycle arrest in MCF7 cells and S cell arrest in MDA-MB-231 cells and induce apoptosis in both cancer cells. Moreover, in silico analysis indicated that the peptide had non-toxic and no inhibitory roles on P4502D6-enzyme. Together, this study shows that YMC is a good source of anti-breast cancer cells peptides.

3.
Crit Rev Food Sci Nutr ; 62(13): 3437-3452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33393366

RESUMO

Cancer is one of the most devastating diseases, and recently, a variety of natural compounds with preventive effects on cancer developments have been reported. Sulforaphane (SFN) is a potent anti-cancer isothiocyanate originating from Brassica oleracea (broccoli). SFN, mainly metabolized via mercapturic acid pathway, has high bioavailability and absorption. The present reviews mainly discussed the metabolism and absorption of SFN and newly discovered mechanistic understanding recent years for SFN's anti-cancer effects including promoting autophagy, inducing epigenetic modifications, suppressing glycolysis and fat metabolism. Moreover, its inhibitory effects on cancer stem cells and synergetic effects with other anti-cancer agents are also reviewed along with the clinical trials in this realm.


Assuntos
Brassica , Neoplasias , Humanos , Isotiocianatos/farmacologia , Neoplasias/tratamento farmacológico , Sulfóxidos
4.
Carbohydr Polym ; 269: 118294, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294320

RESUMO

Breast cancer stem cell (BCSC) properties are correlated with the malignancy of tumor cells. Sulforaphane (SFN), a natural isothiocyanate, has anti-cancer effects. However, SFN is an oil-like, hydrophobic and unstable substance. To enhance the inhibitory effect of SFN on BCSC-like properties, the mineralized hyaluronic acid-SS-tetradecyl nano-carriers (M-HA-SS-TA) were prepared. The nano-carriers possessed high SFN entrapment rate (92.36%) and drug-loading efficiency (33.64%). The carriers were responsive to the high reducing and mild acidic tumor micro-environment, leading to rapid SFN releasing from SFN-loaded nano-drug (SFN/M-HA-SS-TA). Through the specific recognition of breast cancer cells bearing CD44+ by HA, M-HA-SS-TA nano-carriers showed excellent tumor-targeting ability. Moreover, compared with free SFN, SFN/M-HA-SS-TA showed much stronger inhibition on the BCSC-like properties (invasiveness, self-renewal and tumor growth) both in vitro and in vivo. Together, these results suggested M-HA-SS-TA nano-carriers were promising platforms for tumor-targeted delivery of SFN, enhancing the therapeutic efficacy against BCSC-like properties by SFN.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dissulfetos/química , Portadores de Fármacos/química , Ácido Hialurônico/análogos & derivados , Isotiocianatos/uso terapêutico , Nanopartículas/química , Sulfóxidos/uso terapêutico , Animais , Dissulfetos/síntese química , Dissulfetos/metabolismo , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Feminino , Glutationa/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Concentração de Íons de Hidrogênio , Isotiocianatos/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Sulfóxidos/química , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Crit Rev Food Sci Nutr ; 60(5): 810-825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30632783

RESUMO

Breast cancer is a common malignancy with poor prognosis. Cancer cells are heterogeneous and cancer stem cells (CSCs) are primarily responsible for tumor relapse, treatment-resistance and metastasis, so for breast cancer stem cells (BCSCs). Diets are known to be associated with carcinogenesis. Food-derived polyphenols are able to attenuate the formation and virulence of BCSCs, implying that these compounds and their analogs might be promising agents for preventing breast cancer. In the present review, we summarized the origin and surface markers of BCSCs and possible mechanisms responsible for the inhibitory effects of polyphenols on BCSCs. The suppressive effects of common dietary polyphenols against BCSCs, such as curcumin, epigallocatechin gallate (EGCG) and related polyphenolic compounds were further discussed.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/dietoterapia , Neoplasias da Mama/prevenção & controle , Curcumina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Polifenóis/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Curcumina/administração & dosagem , Curcumina/uso terapêutico , Humanos , Polifenóis/administração & dosagem , Polifenóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...