Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(23): 28248-28257, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262400

RESUMO

The humidity of breath can serve as an important health indicator, providing crucial clinical information about human physiology. Significant progress had been made in the development of flexible humidity sensors. However, improving its humidity sensing performance (sensitivity and durability) is still facing many challenges. In this work, near-field electrohydrodynamic direct writing (NFEDW) was proposed to fabricate humidity sensors with high sensitivity and durability for respiration monitoring. Due to the applied electric field, dense carbon nanotube/cellulose nanofiber (CNT/CNF) networks formed during the printing process that enhance the sensitivity of the sensor. The prepared sensor showed excellent humidity responses, with a maximum response value of 61.5% (ΔR/R0) at 95% relative humidity (RH). Additionally, the sensitivity film prepared by the NFEDW method closely fits the poly(ethylene terephthalate) (PET) substrate, endowing the sensor with outstanding bending (with a maximum curvature of 4.7 cm-1) and folding durability (up to 50 times). The sensitivity of the prepared sensor under different simulated conditions, namely, nose breathing, mouth breathing, coughing, yawning, breath holding, and speaking, was excellent, demonstrating the potential of the sensor for the real-time monitoring of human breath humidity. Thus, the high-performance flexible humidity sensor is suitable for human respiration and health monitoring.


Assuntos
Nanofibras , Respiração , Humanos , Umidade , Monitorização Fisiológica , Celulose
2.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234544

RESUMO

Flexible pressure sensors have been widely used in health detection, robot sensing, and shape recognition. The micro-engineered design of the intermediate dielectric layer (IDL) has proven to be an effective way to optimize the performance of flexible pressure sensors. Nevertheless, the performance development of flexible pressure sensors is limited due to cost and process difficulty, prepared by inverted mold lithography. In this work, microstructured arrays printed by aerosol printing act as the IDL of the sensor. It is a facile way to prepare flexible pressure sensors with high performance, simplified processes, and reduced cost. Simultaneously, the effects of microstructure size, PDMS/MWCNTs film, microstructure height, and distance between the microstructures on the sensitivity and response time of the sensor are studied. When the microstructure size, height, and distance are 250 µm, 50 µm, and 400 µm, respectively, the sensor shows a sensitivity of 0.172 kPa-1 with a response time of 98.2 ms and a relaxation time of 111.4 ms. Studies have proven that the microstructured dielectric layer printed by aerosol printing could replace the inverted mold technology. Additionally, applications of the designed sensor are tested, such as the finger pressing test, elbow bending test, and human squatting test, which show good performance.

3.
Materials (Basel) ; 15(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897623

RESUMO

Triboelectric nanogenerators (TENGs) are considered to be the most promising energy supply equipment for wearable devices, due to their excellent portability and good mechanical properties. Nevertheless, low power generation efficiency, high fabrication difficulty, and poor wearability hinder their application in the wearable field. In this work, PA66/graphene fiber films with 0, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt% graphene and PVDF films were prepared by electrospinning. Meanwhile, TENGs were prepared with PA66/graphene fiber films, PVDF films and plain weave conductive cloth, which were used as the positive friction layer, negative friction layer and the flexible substrate, respectively. The results demonstrated that TENGs prepared by PA66/graphene fiber films with 2 wt% grapheme showed the best performance, and that the maximum open circuit voltage and short circuit current of TENGs could reach 180 V and 7.8 µA, respectively, and that the power density was 2.67 W/m2 when the external load was 113 MΩ. This is why the PA66/graphene film produced a more subtle secondary network with the addition of graphene, used as a charge capture site to increase its surface charge. Additionally, all the layered structures of TENGs were composed of breathable electrospun films and plain conductive cloth, with water vapor transmittance (WVT) of 9.6 Kgm-2d-1, reflecting excellent wearing comfort. The study showed that TENGs, based on all electrospinning, have great potential in the field of wearable energy supply devices.

4.
Materials (Basel) ; 15(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806832

RESUMO

Three-dimensional microstructures play a key role in the fabrication of flexible electronic products. However, the development of flexible electronics is limited in further applications due to low positioning accuracy, the complex process, and low production efficiency. In this study, a novel method for fabricating three-dimensional circular truncated cone microstructures via low-frequency ultrasonic resonance printing is proposed. Simultaneously, to simplify the manufacturing process of flexible sensors, the microstructure and printed interdigital electrodes were fabricated into an integrated structure, and a flexible pressure sensor with microstructures was fabricated. Additionally, the effects of flexible pressure sensors with and without microstructures on performance were studied. The results show that the overall performance of the designed sensor with microstructures could be effectively improved by 69%. Moreover, the sensitivity of the flexible pressure sensor with microstructures was 0.042 kPa-1 in the working range of pressure from 2.5 to 10 kPa, and the sensitivity was as low as 0.013 kPa-1 within the pressure range of 10 to 30 kPa. Meanwhile, the sensor showed a fast response time, which was 112 ms. The stability remained good after the 100 cycles of testing. The performance was better than that of the flexible sensor fabricated by the traditional inverted mold method. This lays a foundation for the development of flexible electronic technology in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...