Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(10): 8383-8395, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38695469

RESUMO

Interleukin receptor associated kinase 4 (IRAK4) plays an important role in innate immune signaling through Toll-like and interleukin-1 receptors and represents an attractive target for the treatment of inflammatory diseases and cancer. We previously reported the development of a potent, selective, and brain-penetrant imidazopyrimidine series of IRAK4 inhibitors. However, lead molecule BIO-7488 (1) suffered from low solubility which led to variable PK, compound accumulation, and poor in vivo tolerability. Herein, we describe the discovery of a series of pyridone analogs with improved solubility which are highly potent, selective and demonstrate desirable PK profiles including good oral bioavailability and excellent brain penetration. BIO-8169 (2) reduced the in vivo production of pro-inflammatory cytokines, was well tolerated in safety studies in rodents and dog at margins well above the predicted efficacious exposure and showed promising results in a mouse model for multiple sclerosis.


Assuntos
Encéfalo , Quinases Associadas a Receptores de Interleucina-1 , Inibidores de Proteínas Quinases , Animais , Cães , Masculino , Camundongos , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/síntese química , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade
2.
J Proteome Res ; 20(7): 3689-3700, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34085531

RESUMO

Novel therapies and biomarkers are needed for the treatment of acute ischemic stroke (AIS). This study aimed to provide comprehensive insights into the dynamic proteome changes and underlying molecular mechanisms post-ischemic stroke. TMT-coupled proteomic analysis was conducted on mouse brain cortex tissue from five time points up to 4 weeks poststroke in the distal hypoxic-middle cerebral artery occlusion (DH-MCAO) model. We found that nearly half of the detected proteome was altered following stroke, but only ∼8.6% of the changes were at relatively large scales. Clustering on the changed proteome defined four distinct expression patterns characterized by temporal and quantitative changes in innate and adaptive immune response pathways and cytoskeletal and neuronal remodeling. Further analysis on a subset of 309 "top hits", which temporally responded to stroke with relatively large and sustained changes, revealed that they were mostly secreted proteins, highly correlated to different cortical cytokines, and thereby potential pharmacodynamic biomarker candidates for inflammation-targeting therapies. Closer examination of the top enriched neurophysiologic pathways identified 57 proteins potentially associated with poststroke recovery. Altogether, our study generated a rich dataset with candidate proteins worthy of further validation as biomarkers and/or therapeutic targets for stroke. The proteomics data are available in the PRIDE Archive with identifier PXD025077.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Proteoma/genética , Proteômica
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526652

RESUMO

Identifying molecular mediators of neural circuit development and/or function that contribute to circuit dysfunction when aberrantly reengaged in neurological disorders is of high importance. The role of the TWEAK/Fn14 pathway, which was recently reported to be a microglial/neuronal axis mediating synaptic refinement in experience-dependent visual development, has not been explored in synaptic function within the mature central nervous system. By combining electrophysiological and phosphoproteomic approaches, we show that TWEAK acutely dampens basal synaptic transmission and plasticity through neuronal Fn14 and impacts the phosphorylation state of pre- and postsynaptic proteins in adult mouse hippocampal slices. Importantly, this is relevant in two models featuring synaptic deficits. Blocking TWEAK/Fn14 signaling augments synaptic function in hippocampal slices from amyloid-beta-overexpressing mice. After stroke, genetic or pharmacological inhibition of TWEAK/Fn14 signaling augments basal synaptic transmission and normalizes plasticity. Our data support a glial/neuronal axis that critically modifies synaptic physiology and pathophysiology in different contexts in the mature brain and may be a therapeutic target for improving neurophysiological outcomes.


Assuntos
Degeneração Neural/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Sinapses/metabolismo , Receptor de TWEAK/metabolismo , Animais , Citocina TWEAK/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/fisiopatologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Transmissão Sináptica/fisiologia
4.
ACS Infect Dis ; 2(7): 456-64, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27626097

RESUMO

Fatty acid biosynthesis is essential to bacterial growth in Gram-negative pathogens. Several small molecules identified through a combination of high-throughput and fragment screening were cocrystallized with FabH (ß-ketoacyl-acyl carrier protein synthase III) from Escherichia coli and Streptococcus pneumoniae. Structure-based drug design was used to merge several scaffolds to provide a new class of inhibitors. After optimization for Gram-negative enzyme inhibitory potency, several compounds demonstrated antimicrobial activity against an efflux-negative strain of Haemophilus influenzae. Mutants resistant to these compounds had mutations in the FabH gene near the catalytic triad, validating FabH as a target for antimicrobial drug discovery.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana , Inibidores Enzimáticos/farmacologia , Haemophilus influenzae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/química , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/química , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação
5.
Antimicrob Agents Chemother ; 59(3): 1680-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561334

RESUMO

Sulbactam is a class A ß-lactamase inhibitor with intrinsic whole-cell activity against certain bacterial species, including Acinetobacter baumannii. The clinical use of sulbactam for A. baumannii infections is of interest due to increasing multidrug resistance in this pathogen. However, the molecular drivers of its antibacterial activity and resistance determinants have yet to be precisely defined. Here we show that the antibacterial activities of sulbactam vary widely across contemporary A. baumannii clinical isolates and are mediated through inhibition of the penicillin-binding proteins (PBPs) PBP1 and PBP3, with very low frequency of resistance; the rare pbp3 mutants with high levels of resistance to sulbactam are attenuated in fitness. These results support further investigation of the potential clinical utility of sulbactam.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/fisiologia , Sulbactam/farmacologia , Proteínas de Ligação às Penicilinas/antagonistas & inibidores
6.
Virol J ; 11: 191, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25407889

RESUMO

BACKGROUND: There are no approved small molecule drug therapies for human respiratory syncytial virus (hRSV), a cause of morbidity and mortality in at-risk newborns, the immunocompromised, and the elderly. We have investigated as a potential novel hRSV drug target the protein-protein interaction between the C-terminus of the viral phosphoprotein (P) and the viral nucleocapsid protein (N), components of the ribonucleoprotein complex that contains, replicates, and transcribes the viral RNA genome. Earlier work by others established that the 9 C-terminal residues of P are necessary and sufficient for binding to N. METHODS: We used a fluorescence anisotropy assay, surface plasmon resonance and 2-D NMR to quantify the affinities of peptides based on the C terminus of P for RNA-free, monomeric N-terminal-truncated N(13-391). We calculated the contributions to the free energies of binding of P to N(13-391) attributable to the C-terminal 11 residues, phosphorylation of the C-terminal 2 serine residues, the C-terminal Asp-Phe, and the phenyl ring of the C-terminal Phe. RESULTS: Binding studies confirmed the crucial role of the phosphorylated C-terminal peptide D(pS)DNDL(pS)LEDF for binding of P to RNA-free, monomeric N(13-391), contributing over 90% of the binding free energy at low ionic strength. The phenyl ring of the C-terminal Phe residue contributed an estimated -2.7 kcal/mole of the free energy of binding, the C-terminal Asp-Phe residues contributed -3.8 kcal/mole, the sequence DSDNDLSLE contributed -3.1 kcal/mole, and phosphorylation of the 2 Ser residues contributed -1.8 kcal/mole. Due to the high negative charge of the C-terminal peptide, the affinity of the P C-terminus for N(13-391) decreased as the ionic strength increased. CONCLUSIONS: The results support the idea that the interaction of the C-terminal residues of P with N constitutes a protein-protein interaction hotspot that may be a suitable target for small-molecule drugs that inhibit viral genome replication and transcription.


Assuntos
Nucleoproteínas/química , Nucleoproteínas/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Humanos , Cinética , Nucleoproteínas/genética , Fosforilação , Ligação Proteica , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/genética , Proteínas Estruturais Virais/genética
7.
Biochem Biophys Res Commun ; 450(4): 1327-32, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25003324

RESUMO

LptA is a soluble periplasmic component of the lipopolysaccharide (LPS) transport system of Gram-negative bacteria that transports newly synthesized LPS from the inner membrane to the outer leaflet of the outer membrane. LptA links the inner membrane components (LptBFGC) to the outer membrane components (LptDE), but it is uncertain whether LptA is a freely moving LPS shuttle or part of a stable trans-periplasm structure. Escherichiacoli LptA forms highly polymerized head-to-tail oligomers in solution, but dimers in vivo. We studied the oligomerization of purified Pseudomonasaeruginosa LptA. Size-exclusion chromatography showed that P. aeruginosa LptA, unlike E. coli LptA, is a dimer over a wide range of concentrations. Chemical crosslinking with bis(sulfosuccinimidyl) suberate confirmed that dimers were the predominant species even at sub-micromolar LptA concentrations, which was unaffected by LPS binding. Mass spectrometry of crosslinked dimers showed that crosslinks occurred between the N-terminal α-amino group and either Lys-172 or Lys-173 near the C-terminus. These results support a hypothetical structure for the dimer of isolated P. aeruginosa LptA in which the N-terminus of one monomer is in close proximity to the C-terminus of the other, and the same surface of each monomer forms the interface between them, preventing further oligomerization.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Cromatografia em Gel , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
8.
Anal Biochem ; 463: 15-22, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24945954

RESUMO

High-molecular-weight penicillin-binding proteins (PBPs) are essential integral membrane proteins of the bacterial cytoplasmic membrane responsible for biosynthesis of peptidoglycan. They are the targets of antibacterial ß-lactam drugs, including penicillins, cephalosporins, and carbapenems. ß-Lactams covalently acylate the active sites of the PBP transpeptidase domains. Because ß-lactams are time-dependent inhibitors, quantitative assessment of the inhibitory activity of these compounds ideally involves measurement of their second-order acylation rate constants. We previously described a fluorescence anisotropy-based assay to measure these rate constants for soluble constructs of PBP3 (Anal. Biochem. 439 (2013) 37-43). Here we report the expression and purification of a soluble construct of Pseudomonas aeruginosa PBP2 as a fusion protein with NusA. This soluble PBP2 was used to measure second-order acylation rate constants with the fluorescence anisotropy assay. Measurements were obtained for mecillinam, which reacts specifically with PBP2, and for several carbapenems. The assay also revealed that PBP2 slowly hydrolyzed mecillinam and was used to measure the rate constant for this deacylation reaction.


Assuntos
Polarização de Fluorescência , Pseudomonas aeruginosa/metabolismo , Acilação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compostos de Boro/metabolismo , Eletroforese em Gel de Poliacrilamida , Cinética , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Penicilinas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
9.
Antimicrob Agents Chemother ; 57(12): 6005-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041904

RESUMO

Inhibitors of 4'-phosphopantetheine adenylyltransferase (PPAT) were identified through high-throughput screening of the AstraZeneca compound library. One series, cycloalkyl pyrimidines, showed inhibition of PPAT isozymes from several species, with the most potent inhibition of enzymes from Gram-positive species. Mode-of-inhibition studies with Streptococcus pneumoniae and Staphylococcus aureus PPAT demonstrated representatives of this series to be reversible inhibitors competitive with phosphopantetheine and uncompetitive with ATP, binding to the enzyme-ATP complex. The potency of this series was optimized using structure-based design, and inhibition of cell growth of Gram-positive species was achieved. Mode-of-action studies, using generation of resistant mutants with targeted sequencing as well as constructs that overexpress PPAT, demonstrated that growth suppression was due to inhibition of PPAT. An effect on bacterial burden was demonstrated in mouse lung and thigh infection models, but further optimization of dosing requirements and compound properties is needed before these compounds can be considered for progress into clinical development. These studies validated PPAT as a novel target for antibacterial therapy.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Cristalografia por Raios X , Descoberta de Drogas , Inibidores Enzimáticos/química , Feminino , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Modelos Moleculares , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Panteteína/análogos & derivados , Panteteína/química , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Bibliotecas de Moléculas Pequenas/química , Staphylococcus aureus/enzimologia , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Coxa da Perna/microbiologia
10.
J Biol Chem ; 288(39): 27960-71, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23913691

RESUMO

Avibactam is a non-ß-lactam ß-lactamase inhibitor with a spectrum of activity that includes ß-lactamase enzymes of classes A, C, and selected D examples. In this work acylation and deacylation rates were measured against the clinically important enzymes CTX-M-15, KPC-2, Enterobacter cloacae AmpC, Pseudomonas aeruginosa AmpC, OXA-10, and OXA-48. The efficiency of acylation (k2/Ki) varied across the enzyme spectrum, from 1.1 × 10(1) m(-1)s(-1) for OXA-10 to 1.0 × 10(5) for CTX-M-15. Inhibition of OXA-10 was shown to follow the covalent reversible mechanism, and the acylated OXA-10 displayed the longest residence time for deacylation, with a half-life of greater than 5 days. Across multiple enzymes, acyl enzyme stability was assessed by mass spectrometry. These inhibited enzyme forms were stable to rearrangement or hydrolysis, with the exception of KPC-2. KPC-2 displayed a slow hydrolytic route that involved fragmentation of the acyl-avibactam complex. The identity of released degradation products was investigated, and a possible mechanism for the slow deacylation from KPC-2 is proposed.


Assuntos
Compostos Azabicíclicos/química , Escherichia coli/efeitos dos fármacos , beta-Lactamases/química , Antibacterianos/química , Farmacorresistência Bacteriana , Enterobacter cloacae/metabolismo , Inibidores Enzimáticos/química , Escherichia coli/metabolismo , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Plasmídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Fatores de Tempo
11.
Anal Biochem ; 439(1): 37-43, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23603065

RESUMO

We report a simple, rapid, and reproducible fluorescence anisotropy-based method for measuring rate constants for acylation and deacylation of soluble penicillin binding protein (PBP) constructs by compounds in microtiter plates by means of competition with time-dependent acylation by BOCILLIN FL. The method is demonstrated by measuring the acylation rate constants of the PBP3 periplasmic domains from Pseudomonas aeruginosa and Acinetobacter baumannii by BOCILLIN FL, aztreonam, meropenem, and ceftazidime. The new method requires very little protein and can be completed in approximately 1h per compound. A set of BOCILLIN FL acylation progress curves collected over a range of competitor concentrations is fit globally to a kinetic model by numerical integration. First-order deacylation rate constants could also be measured, as demonstrated with a catalytically impaired mutant OXA-10 ß-lactamase.


Assuntos
Compostos de Boro/metabolismo , Polarização de Fluorescência/métodos , Proteínas de Ligação às Penicilinas/metabolismo , Penicilinas/metabolismo , Acinetobacter baumannii/citologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Cinética , Proteínas de Ligação às Penicilinas/química , Periplasma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/citologia
12.
ACS Chem Biol ; 8(3): 643-50, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23272696

RESUMO

Transforming growth factor-ß activated kinase-1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family that regulates several signaling pathways including NF-κB signal transduction and p38 activation. TAK1 deregulation has been implicated in human diseases including cancer and inflammation. Here, we show that, in addition to its kinase activity, TAK1 has intrinsic ATPase activity, that (5Z)-7-Oxozeaenol irreversibly inhibits TAK1, and that sensitivity to (5Z)-7-Oxozeaenol inhibition in hematological cancer cell lines is NRAS mutation status and TAK1 pathway dependent. X-ray crystallographic and mass spectrometric studies showed that (5Z)-7-Oxozeaenol forms a covalent complex with TAK1. Detailed biochemical characterization revealed that (5Z)-7-Oxozeaenol inhibited both the kinase and the ATPase activity of TAK1 following a bi-phase kinetics, consistent with the irreversible inhibition mechanism. In DoHH2 cells, (5Z)-7-Oxozeaenol potently inhibited the p38 phosphorylation driven by TAK1, and the inhibition lasted over 6 h after withdrawal of (5Z)-7-Oxozeaenol. Profiling (5Z)-7-Oxozeaenol in a panel of hematological cancer cells showed that sensitive cell lines tended to carry NRAS mutations and that genes in TAK1 regulated pathways were enriched in sensitive cell lines. Taken together, we have elucidated the molecular mechanism of a TAK1 irreversible inhibitor and laid the foundation for designing next generation TAK1 irreversible inhibitors. The NRAS-TAK1-Wnt signaling network discerned in our study may prove to be useful in patient selection for TAK1 targeted agents in hematological cancers.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Zearalenona/análogos & derivados , Linhagem Celular Tumoral , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , MAP Quinase Quinase Quinases/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Zearalenona/química , Zearalenona/farmacologia
13.
Proc Natl Acad Sci U S A ; 109(29): 11663-8, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753474

RESUMO

Avibactam is a ß-lactamase inhibitor that is in clinical development, combined with ß-lactam partners, for the treatment of bacterial infections comprising gram-negative organisms. Avibactam is a structural class of inhibitor that does not contain a ß-lactam core but maintains the capacity to covalently acylate its ß-lactamase targets. Using the TEM-1 enzyme, we characterized avibactam inhibition by measuring the on-rate for acylation and the off-rate for deacylation. The deacylation off-rate was 0.045 min(-1), which allowed investigation of the deacylation route from TEM-1. Using NMR and MS, we showed that deacylation proceeds through regeneration of intact avibactam and not hydrolysis. Other than TEM-1, four additional clinically relevant ß-lactamases were shown to release intact avibactam after being acylated. We showed that avibactam is a covalent, slowly reversible inhibitor, which is a unique mechanism of inhibition among ß-lactamase inhibitors.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Inibidores de beta-Lactamases , Acilação/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Compostos Azabicíclicos/química , Compostos Azabicíclicos/metabolismo , Descoberta de Drogas/métodos , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , beta-Lactamases
14.
ACS Chem Biol ; 7(3): 571-80, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22230472

RESUMO

NAD(+)-dependent DNA ligases (LigA) are essential bacterial enzymes that catalyze phosphodiester bond formation during DNA replication and repair processes. Phosphodiester bond formation proceeds through a 3-step reaction mechanism. In the first step, the LigA adenylation domain interacts with NAD(+) to form a covalent enzyme-AMP complex. Although it is well established that the specificity for binding of NAD(+) resides within the adenylation domain, the precise recognition elements for the initial binding event remain unclear. We report here the structure of the adenylation domain from Haemophilus influenzae LigA. This structure is a first snapshot of a LigA-AMP intermediate with NAD(+) bound to domain 1a in its open conformation. The binding affinities of NAD(+) for adenylated and nonadenylated forms of the H. influenzae LigA adenylation domain were similar. The combined crystallographic and NAD(+)-binding data suggest that the initial recognition of NAD(+) is via the NMN binding region in domain 1a of LigA.


Assuntos
DNA Ligases/metabolismo , Haemophilus influenzae/enzimologia , NAD/metabolismo , Calorimetria , Clonagem Molecular , Cristalização , DNA Ligases/química , DNA Ligases/isolamento & purificação , Modelos Moleculares , Conformação Proteica
15.
J Biomol Screen ; 17(3): 327-38, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22068704

RESUMO

A novel assay for the NADPH-dependent bacterial enzyme UDP-N-acetylenolpyruvylglucosamine reductase (MurB) is described that has nanomolar sensitivity for product formation and is suitable for high-throughput applications. MurB catalyzes an essential cytoplasmic step in the synthesis of peptidoglycan for the bacterial cell wall, reduction of UDP-N-acetylenolpyruvylglucosamine to UDP-N-acetylmuramic acid (UNAM). Interruption of this biosynthetic pathway leads to cell death, making MurB an attractive target for antibacterial drug discovery. In the new assay, the UNAM product of the MurB reaction is ligated to L-alanine by the next enzyme in the peptidoglycan biosynthesis pathway, MurC, resulting in hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP). The ADP is detected with nanomolar sensitivity by converting it to oligomeric RNA with polynucleotide phosphorylase and detecting the oligomeric RNA with a fluorescent dye. The product sensitivity of the new assay is 1000-fold greater than that of the standard assay that follows the absorbance decrease resulting from the conversion of NADPH to NADP(+). This sensitivity allows inhibitor screening to be performed at the low substrate concentrations needed to make the assay sensitive to competitive inhibition of MurB.


Assuntos
Desidrogenases de Carboidrato/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Difosfato de Adenosina/metabolismo , Antibacterianos/química , Desidrogenases de Carboidrato/análise , Parede Celular , Descoberta de Drogas/métodos , Escherichia coli/metabolismo , Fluorescência , Peptidoglicano/biossíntese , Polirribonucleotídeo Nucleotidiltransferase/metabolismo
16.
J Pharm Biomed Anal ; 35(4): 817-28, 2004 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15193726

RESUMO

An enzyme activity assay, based on mass spectrometric (MS) detection of specific reaction product following HPLC separation, has been developed to evaluate pharmaceutical hits identified from primary high throughput screening (HTS) against target enzyme Escherichia coli UDP-N-acetyl-muramyl-L-alanine ligase (MurC), an essential enzyme in the bacterial peptidoglycan biosynthetic pathway, and to study the kinetics of the enzyme. A comparative analysis of this new liquid chromatographic-MS (LC-MS) based assay with a conventional spectrophotometric Malachite Green (MG) assay, which detects phosphate produced in the reaction, was performed. The results demonstrated that the LC-MS assay, which determines specific ligase activity of MurC, offers several advantages including a lower background (0.2% versus 26%), higher sensitivity (> or = 10 fold), lower limit of quantitation (LOQ) (0.02 microM versus 1 microM) and wider linear dynamic range (> or = 4 fold) than the MG assay. Good precision for the LC-MS assay was demonstrated by the low intraday and interday coefficient of variation (CV) values (3 and 6%, respectively). The LC-MS assay, free of the artifacts often seen in the Malachite Green assay, offers a valuable secondary assay for hit evaluation in which the false positives from the primary high throughput screening can be eliminated. In addition, the applicability of this assay to the study of enzyme kinetics has also been demonstrated.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/metabolismo , Cromatografia Líquida/métodos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Ativação Enzimática/efeitos dos fármacos , Cinética , Espectrometria de Massas/métodos , Sensibilidade e Especificidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...