Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 51(7): 3752-3766, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32175884

RESUMO

The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks.

2.
IEEE Trans Cybern ; 50(6): 2715-2729, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31545753

RESUMO

Cloud workflow scheduling is a significant topic in both commercial and industrial applications. However, the growing scale of workflow has made such a scheduling problem increasingly challenging. Many current algorithms often deal with small- or medium-scale problems (e.g., less than 1000 tasks) and face difficulties in providing satisfactory solutions when dealing with the large-scale problems, due to the curse of dimensionality. To this aim, this article proposes a dynamic group learning distributed particle swarm optimization (DGLDPSO) for large-scale optimization and extends it for the large-scale cloud workflow scheduling. DGLDPSO is efficient for large-scale optimization due to its following two advantages. First, the entire population is divided into many groups, and these groups are coevolved by using the master-slave multigroup distributed model, forming a distributed PSO (DPSO) to enhance the algorithm diversity. Second, a dynamic group learning (DGL) strategy is adopted for DPSO to balance diversity and convergence. When applied DGLDPSO into the large-scale cloud workflow scheduling, an adaptive renumber strategy (ARS) is further developed to make solutions relate to the resource characteristic and to make the searching behavior meaningful rather than aimless. Experiments are conducted on the large-scale benchmark functions set and the large-scale cloud workflow scheduling instances to further investigate the performance of DGLDPSO. The comparison results show that DGLDPSO is better than or at least comparable to other state-of-the-art large-scale optimization algorithms and workflow scheduling algorithms.

3.
IEEE Trans Cybern ; 50(10): 4454-4468, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545754

RESUMO

Supply chain network design (SCND) is a complicated constrained optimization problem that plays a significant role in the business management. This article extends the SCND model to a large-scale SCND with uncertainties (LUSCND), which is more practical but also more challenging. However, it is difficult for traditional approaches to obtain the feasible solutions in the large-scale search space within the limited time. This article proposes a cooperative coevolutionary bare-bones particle swarm optimization (CCBBPSO) with function independent decomposition (FID), called CCBBPSO-FID, for a multiperiod three-echelon LUSCND problem. For the large-scale issue, binary encoding of the original model is converted to integer encoding for dimensionality reduction, and a novel FID is designed to efficiently decompose the problem. For obtaining the feasible solutions, two repair methods are designed to repair the infeasible solutions that appear frequently in the LUSCND problem. A step translation method is proposed to deal with the variables out of bounds, and a labeled reposition operator with adaptive probabilities is designed to repair the infeasible solutions that violate the constraints. Experiments are conducted on 405 instances with three different scales. The results show that CCBBPSO-FID has an evident superiority over contestant algorithms.

4.
IEEE Trans Neural Netw Learn Syst ; 31(5): 1557-1570, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31329131

RESUMO

In dynamic optimization problems (DOPs), as the environment changes through time, the optima also dynamically change. How to adapt to the dynamic environment and quickly find the optima in all environments is a challenging issue in solving DOPs. Usually, a new environment is strongly relevant to its previous environment. If we know how it changes from the previous environment to the new one, then we can transfer the information of the previous environment, e.g., past solutions, to get new promising information of the new environment, e.g., new high-quality solutions. Thus, in this paper, we propose a neural network (NN)-based information transfer method, named NNIT, to learn the transfer model of environment changes by NN and then use the learned model to reuse the past solutions. When the environment changes, NNIT first collects the solutions from both the previous environment and the new environment and then uses an NN to learn the transfer model from these solutions. After that, the NN is used to transfer the past solutions to new promising solutions for assisting the optimization in the new environment. The proposed NNIT can be incorporated into population-based evolutionary algorithms (EAs) to solve DOPs. Several typical state-of-the-art EAs for DOPs are selected for comprehensive study and evaluated using the widely used moving peaks benchmark. The experimental results show that the proposed NNIT is promising and can accelerate algorithm convergence.

5.
IEEE Trans Cybern ; 49(1): 27-41, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29990116

RESUMO

This paper develops a decomposition-based coevolutionary algorithm for many-objective optimization, which evolves a number of subpopulations in parallel for approaching the set of Pareto optimal solutions. The many-objective problem is decomposed into a number of subproblems using a set of well-distributed weight vectors. Accordingly, each subpopulation of the algorithm is associated with a weight vector and is responsible for solving the corresponding subproblem. The exploration ability of the algorithm is improved by using a mating pool that collects elite individuals from the cooperative subpopulations for breeding the offspring. In the subsequent environmental selection, the top-ranked individuals in each subpopulation, which are appraised by aggregation functions, survive for the next iteration. Two new aggregation functions with distinct characteristics are designed in this paper to enhance the population diversity and accelerate the convergence speed. The proposed algorithm is compared with several state-of-the-art many-objective evolutionary algorithms on a large number of benchmark instances, as well as on a real-world design problem. Experimental results show that the proposed algorithm is very competitive.

6.
IEEE Trans Cybern ; 49(8): 2912-2926, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29994556

RESUMO

Cloud workflow scheduling is significantly challenging due to not only the large scale of workflow but also the elasticity and heterogeneity of cloud resources. Moreover, the pricing model of clouds makes the execution time and execution cost two critical issues in the scheduling. This paper models the cloud workflow scheduling as a multiobjective optimization problem that optimizes both execution time and execution cost. A novel multiobjective ant colony system based on a co-evolutionary multiple populations for multiple objectives framework is proposed, which adopts two colonies to deal with these two objectives, respectively. Moreover, the proposed approach incorporates with the following three novel designs to efficiently deal with the multiobjective challenges: 1) a new pheromone update rule based on a set of nondominated solutions from a global archive to guide each colony to search its optimization objective sufficiently; 2) a complementary heuristic strategy to avoid a colony only focusing on its corresponding single optimization objective, cooperating with the pheromone update rule to balance the search of both objectives; and 3) an elite study strategy to improve the solution quality of the global archive to help further approach the global Pareto front. Experimental simulations are conducted on five types of real-world scientific workflows and consider the properties of Amazon EC2 cloud platform. The experimental results show that the proposed algorithm performs better than both some state-of-the-art multiobjective optimization approaches and the constrained optimization approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...