Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(4): 279, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637504

RESUMO

Cisplatin (DDP)-based chemoradiotherapy is one of the standard treatments for nasopharyngeal carcinoma (NPC). However, the sensitivity and side effects of DDP to patients remain major obstacles for NPC treatment. This research aimed to study DDP sensitivity regulated by cancer-associated fibroblasts (CAFs) through modulating ferroptosis. We demonstrated that DDP triggered ferroptosis in NPC cells, and it inhibited tumor growth via inducing ferroptosis in xenograft model. CAFs secreted high level of FGF5, thus inhibiting DDP-induced ferroptosis in NPC cells. Mechanistically, FGF5 secreted by CAFs directly bound to FGFR2 in NPC cells, leading to the activation of Keap1/Nrf2/HO-1 signaling. Rescued experiments indicated that FGFR2 overexpression inhibited DDP-induced ferroptosis, and CAFs protected against DDP-induced ferroptosis via FGF5/FGFR2 axis in NPC cells. In vivo data further showed the protective effects of FGF5 on DDP-triggered ferroptosis in NPC xenograft model. In conclusion, CAFs inhibited ferroptosis to decrease DDP sensitivity in NPC through secreting FGF5 and activating downstream FGFR2/Nrf2 signaling. The therapeutic strategy targeting FGF5/FGFR2 axis from CAFs might augment DDP sensitivity, thus decreasing the side effects of DDP in NPC treatment.


Assuntos
Fibroblastos Associados a Câncer , Ferroptose , Neoplasias Nasofaríngeas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/patologia , Resistencia a Medicamentos Antineoplásicos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos
2.
Mol Cancer ; 23(1): 20, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254110

RESUMO

The incidence of nasopharyngeal carcinoma (NPC) exhibits significant variations across different ethnic groups and geographical regions, with Southeast Asia and North Africa being endemic areas. Of note, Epstein-Barr virus (EBV) infection is closely associated with almost all of the undifferentiated NPC cases. Over the past three decades, radiation therapy and chemotherapy have formed the cornerstone of NPC treatment. However, recent advancements in immunotherapy have introduced a range of promising approaches for managing NPC. In light of these developments, it has become evident that a deeper understanding of the tumor microenvironment (TME) is crucial. The TME serves a dual function, acting as a promoter of tumorigenesis while also orchestrating immunosuppression, thereby facilitating cancer progression and enabling immune evasion. Consequently, a comprehensive comprehension of the TME and its intricate involvement in the initiation, progression, and metastasis of NPC is imperative for the development of effective anticancer drugs. Moreover, given the complexity of TME and the inter-patient heterogeneity, personalized treatment should be designed to maximize therapeutic efficacy and circumvent drug resistance. This review aims to provide an in-depth exploration of the TME within the context of EBV-induced NPC, with a particular emphasis on its pivotal role in regulating intercellular communication and shaping treatment responses. Additionally, the review offers a concise summary of drug resistance mechanisms and potential strategies for their reversal, specifically in relation to chemoradiation therapy, targeted therapy, and immunotherapy. Furthermore, recent advances in clinical trials pertaining to NPC are also discussed.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Infecções por Vírus Epstein-Barr/complicações , Carcinoma Nasofaríngeo/tratamento farmacológico , Microambiente Tumoral , Herpesvirus Humano 4 , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética
3.
Cell Death Dis ; 14(12): 852, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129408

RESUMO

Reprogramming of macrophages toward an M1 phenotype is a novel strategy to induce anticancer immunity. However, the regulatory mechanisms of M1 macrophage polarization and its functional roles in nasopharyngeal carcinoma (NPC) progression need to be further explored. Here we found that SPLUNC1 was highly expressed and responsible for M1 macrophage polarization. JAK/STATs pathway activation was involved in SPLUNC1-mediated M1 macrophage polarization. Importantly, regulation of SPLUNC1 in macrophages affected CM-mediated influence on NPC cell proliferation and migration. Mechanistically, USP7 deubiquitinated and stabilized TRIM24, which promoted SPLUNC1 expression via recruitment of STAT3 in M1 macrophages. Depletion of TRIM24 inhibited M1 macrophage polarization, which facilitated NPC cell growth and migration. However, over-expression of USP7 exhibited the opposite results and counteracted the tumorigenic effect of TRIM24 silencing. Finally, the growth and metastasis of NPC cells in vivo were repressed by USP7-induced M1 macrophage polarization via modulating TRIM24/SPLUNC1 axis. USP7 delayed NPC progression via promoting macrophage polarization toward M1 through regulating TRIM24/SPLUNC1 pathway, providing evidence for the development of effective antitumor immunotherapies for NPC.


Assuntos
Macrófagos , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Macrófagos/metabolismo , Neoplasias Nasofaríngeas/patologia , Ativação de Macrófagos , Proteínas de Transporte/metabolismo
4.
Int Immunopharmacol ; 122: 110629, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451020

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor with a high incidence and recurrence rate. The crosstalk between ferroptosis and tumor-associated macrophages (TAMs) is thought to have major implications in interfering with cancers. We intended to explore the effect of acyl-CoA synthetase long-chain family member 4 (ACSL4) on the pathogenesis of NPC via ferroptosis and TAMs. METHODS: Differential genes in NPC patients were analyzed using publicly available databases, and the ferroptosis-related gene ACSL4 was identified. Expression of ACSL4 in NPC cell lines and xenografted mice was examined. Colony formation, cell proliferation, migration, and invasion were assessed. The abundance of epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin, and Vimentin) was confirmed. Lipid peroxidation levels and related markers were measured. Clophosome was administered to determine the role of TAMs in NPC mice. RESULTS: Low levels of ACSL4 were observed in NPC patients and CNE-2 and 5-8F cells. Erastin (a ferroptosis inducer) and ACSL4 increased lipid peroxidation, decreased cell viability, colony formation, cell proliferation, migration and invasion, and inhibited EMT. Moreover, Erastin and ACSL4 promoted M2 to M1 macrophage polarization. The effects of erastin and ACSL4 were additive. Ferrostatin-1, an inhibitor of ferroptosis, exerted the opposite effect and reversed the beneficial effects of ACSL4 overexpression. In xenograft mice, ACSL4 and clophosome hindered the growth of NPC, and extra clophosome slightly enhanced the antitumor effect of ACSL4. CONCLUSION: Our findings indicated that ACSL4 inhibited the pathogenesis of NPC, at least through crosstalk between ferroptosis and macrophages, providing potential direction for NPC therapy.


Assuntos
Ferroptose , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animais , Humanos , Camundongos , Carcinogênese , Linhagem Celular Tumoral , Macrófagos/patologia , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética
5.
Med Oncol ; 39(12): 214, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175598

RESUMO

Nasopharyngeal carcinoma (NPC) is one of the aggressive malignant tumors with high mortality, and the proliferation of myeloid-derived suppressor cells (MDSCs) could promote the metastasis of NPC through inhibiting the function of T cells. Meanwhile, SPLUNC1 was known to inhibit the malignant behavior of NPC cells, while the detailed function of SPLUNC1 in LPS-modified immune microenvironment of NPC remains unclear. To assess the impact of SPLUNC1 in immune microenvironment during the progression of NPC, NPC cells were exposed to LPS and then co-cultured with MDSCs for 48 h. RT-qPCR and western blot were performed to evaluate the mRNA and protein level of SPLUNC1, CXCL-2 and CXCR-2, respectively. The level of IL-1ß, IL-6, TNF-α, PD-L1, Arg-1 and iNOS were tested by ELISA. Meanwhile, the expression of CD33+ was tested by flow cytometry. The expression of CXCL-2 and CXCR-2 in NPC cells was higher, compared to that in NP69 cells. In contrast, SPLUNC1 level in NPC cells was much lower than that in NP69 cells. SPLUNC1 level was negatively correlated with CXCL-2 and CXCR-2. Overexpression of SPLUNC1 reversed LPS-induced inflammatory responses and proliferation in NPC cells. In addition, SPLUNC1 upregulation could reverse LPS-induced proliferation of MDSCs in tumor microenvironment. Meanwhile, SPLUNC1 overexpression could regulate CXCL-2/CXCR-2 axis through decreasing CXCL-2 and CXCR-2 protein and mRNA expression. SPLUNC1 regulates LPS-induced progression of nasopharyngeal carcinoma and proliferation of MDSCs. Thus, our study might provide a theoretical basis for discovering new strategies against NPC.


Assuntos
Glicoproteínas/metabolismo , Células Supressoras Mieloides , Neoplasias Nasofaríngeas , Fosfoproteínas/metabolismo , Antígeno B7-H1 , Proliferação de Células , Humanos , Interleucina-6 , Lipopolissacarídeos/farmacologia , Carcinoma Nasofaríngeo , Microambiente Tumoral , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...