Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Med Microbiol ; 314: 151597, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217947

RESUMO

Pasteurella multocida is a zoonotic pathogen causing serious diseases in humans and animals. Here, we report P. multocida from wildlife on China's Qinghai-Tibet plateau with a novel capsular serotype, forming a single branch on the core-genome phylogenetic tree: four strains isolated from dead Himalayan marmot (Marmota himalayana) and one genome assembled from metagenomic sequencing of a dead Woolly hare (Lepus oiostolus). Four of the strains were identified as subspecies multocida and one was septica. The mouse model showed that the challenge strain killed mice within 24 h at an infectious dose of less than 300 bacteria. The short disease course is comparable to septicemic plague: the host has died before more severe pathological changes could take place. Though pathological changes were relatively mild, cytokine storm was obvious with a significant rise of IL-12p70, IL-6, TNF-αand IL-10 (P < 0.05). Our findings suggested P. multocida is a lethal pathogen for wildlife on Qinghai-Tibet plateau, in addition to Yersinia pestis. Individuals residing within the M. himalayana plague focus are at risk for P. multocida infection, and public health warnings are necessitated.


Assuntos
Pasteurella multocida , Peste , Animais , Humanos , Camundongos , Tibet , Marmota/microbiologia , Pasteurella multocida/genética , Filogenia , Sorogrupo , China , Peste/microbiologia , Animais Selvagens
2.
PeerJ ; 11: e16394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941936

RESUMO

Background: Shotgun metagenomic and 16S rDNA sequencing are commonly used methods to identify the taxonomic composition of microbial communities. Previously, we analysed the gut microbiota and intestinal pathogenic bacteria configuration of migratory seagulls by using 16S rDNA sequencing and culture methods. Methods: To continue in-depth research on the gut microbiome and reveal the applicability of the two methods, we compared the metagenome and 16S rDNA amplicon results to further demonstrate the features of this animal. Results: The number of bacterial species detected by metagenomics gradually increased from the phylum to species level, consistent with 16S rDNA sequencing. Several taxa were commonly shared by both sequencing methods. However, Escherichia, Shigella, Erwinia, Klebsiella, Salmonella, Escherichia albertii, Shigella sonnei, Salmonella enterica, and Shigella flexneri were unique taxa for the metagenome compared with Escherichia-Shigella, Hafnia-Obesumbacterium, Catellicoccus marimammalium, Lactococcus garvieae, and Streptococcus gallolyticus for 16S rDNA sequencing. The largest differences in relative abundance between the two methods were identified at the species level, which identified many pathogenic bacteria to humans using metagenomic sequencing. Pearson correlation analysis indicated that the correlation coefficient for the two methods gradually decreased with the refinement of the taxonomic levels. The high consistency of the correlation coefficient was identified at the genus level for the beta diversity of the two methods. Conclusions: In general, relatively consistent patterns and reliability could be identified by both sequencing methods, but the results varied following the refinement of taxonomic levels. Metagenomic sequencing was more suitable for the discovery and detection of pathogenic bacteria of gut microbiota in seagulls. Although there were large differences in the numbers and abundance of bacterial species of the two methods in terms of taxonomic levels, the patterns and reliability results of the samples were consistent.


Assuntos
Microbioma Gastrointestinal , Salmonella enterica , Humanos , Animais , Microbioma Gastrointestinal/genética , DNA Ribossômico/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , RNA Ribossômico 16S/genética , Salmonella enterica/genética
3.
BMC Genomics ; 24(1): 269, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208617

RESUMO

BACKGROUND: Seagull as a migratory wild bird has become most popular species in southwest China since 1980s. Previously, we analyzed the gut microbiota and intestinal pathogenic bacteria configuration for this species by using 16S rRNA sequencing and culture methods. To continue in-depth research on the gut microbiome of migratory seagulls, the metagenomics, DNA virome and RNA virome were both investigated for their gut microbial communities of abundance and diversity in this study. RESULTS: The metagenomics results showed 99.72% of total species was bacteria, followed by viruses, fungi, archaea and eukaryota. In particular, Shigella sonnei, Escherichia albertii, Klebsiella pneumonia, Salmonella enterica and Shigella flexneri were the top distributed taxa at species level. PCoA, NMDS, and statistics indicated some drug resistant genes, such as adeL, evgS, tetA, PmrF, and evgA accumulated as time went by from November to January of the next year, and most of these genes were antibiotic efflux. DNA virome composition demonstrated that Caudovirales was the most abundance virus, followed by Cirlivirales, Geplafuvirales, Petitvirales and Piccovirales. Most of these phages corresponded to Enterobacteriaceae and Campylobacteriaceae bacterial hosts respectively. Caliciviridae, Coronaviridae and Picornaviridae were the top distributed RNA virome at family level of this migratory animal. Phylogenetic analysis indicated the sequences of contigs of Gammacoronavirus and Deltacoronavirus had highly similarity with some coronavirus references. CONCLUSIONS: In general, the characteristics of gut microbiome of migratory seagulls were closely related to human activities, and multiomics still revealed the potential public risk to human health.


Assuntos
Microbioma Gastrointestinal , Vírus , Animais , Humanos , Microbioma Gastrointestinal/genética , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Fezes/microbiologia , Vírus/genética , Bactérias/genética , DNA
4.
Biosaf Health ; 4(6): 406-409, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36320663

RESUMO

The Omicron variants spread rapidly worldwide after being initially detected in South Africa in November 2021. It showed increased transmissibility and immune evasion with far more amino acid mutations in the spike (S) protein than the previously circulating variants of concern (VOCs). Notably, on 15 July 2022, we monitored the first VOC / Omicron subvariant BA.2.75 in China from an imported case. Moreover, nowadays, this subvariant still is predominant in India. It has nine additional mutations in the S protein compared to BA.2, three of which (W152R, G446S, and R493Q reversion) might contribute to higher transmissibility and immune escape. This subvariant could cause wider spread and pose a threat to the global situation. Our timely reporting and continuous genomic analysis are essential to fully elucidate the characteristics of the subvariant BA.2.75 in the future.

5.
Am J Transl Res ; 14(10): 7336-7349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398250

RESUMO

OBJECTIVES: Corneal repair is critical for the treatment and recovery of corneal injuries. However, the molecular mechanism underlying corneal repair remains unclear. METHODS: A tree shrew model of corneal fungal infection was established by injecting Fusarium solani into the corneal stroma to study the role of miR-204-3p in repairing corneal injury induced by fungal keratitis and to explore the potential mechanisms underlying the repair process. RESULTS: miR-204-3p expression was significantly downregulated, while KRT16 expression was significantly upregulated after F. solani infection in the cornea of tree shrews. Moreover, miR-204-3p injection promoted corneal injury repair post-infection, potentially by downregulating KRT16 expression. Results of a luciferase reporter gene assay showed that miR-204-3p had a targeted relationship with KRT16. KRT16 protein expression levels decreased after miR-204-3p injection into the cornea with fungal keratitis, reducing the degree of corneal injury. CONCLUSIONS: In this study, we report for the first time that miR-204-3p and KRT16 influence the repair of corneal injury. In addition, their effects on the repair of corneal injury were studied in a tree shrew model, providing an experimental basis for the study of pathogenesis of human fungal keratitis.

6.
PeerJ ; 10: e14016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093337

RESUMO

Background: Clostridioides difficile infection (CDI) caused by toxigenic strains leads to antibiotic-related diarrhea, colitis, or even fatal pseudomembranous enteritis. Previously, we conducted a cross-sectional study on prevalence of CDI in southwest China. However, the antibiotics resistance and characteristics of genomes of these isolates are still unknown. Methods: Antibiotic susceptibility testing with E-test strips and whole genome sequence analysis were used to characterize the features of these C. difficile isolates. Results: Forty-nine strains of C. difficile were used in this study. Five isolates were non-toxigenic and the rest carried toxigenic genes. We have previously reported that ST35/RT046, ST3/RT001 and ST3/RT009 were the mostly distributed genotypes of strains in the children group. In this study, all the C. difficile isolates were sensitive to metronidazole, meropenem, amoxicillin/clavulanic acid and vancomycin. Most of the strains were resistant to erythromycin, gentamicin and clindamycin. The annotated resistant genes, such as macB, vanRA, vanRG, vanRM, arlR, and efrB were mostly identified related to macrolide, glycopeptide, and fluoroquinolone resistance. Interestingly, 77.55% of the strains were considered as multi-drug resistant (MDR). Phylogenetic analysis based on core genome of bacteria revealed all the strains were divided into clade 1 and clade 4. The characteristics of genome diversity for clade 1 could be found. None of the isolates showed 18-bp deletion of tcdC as RT027 strain as described before, and polymorphism of tcdB showed a high degree of conservation than tcdA gene. Conclusions: Most of the C. difficile isolates in this study were resistant to macrolide and aminoglycoside antibiotics. Moreover, the MDR strains were commonly found. All the isolates belonged to clade 1 and clade 4 according to phylogenetic analysis of bacterial genome, and highly genomic diversity of clade 1 was identified for these strains.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Criança , Humanos , Clostridioides difficile/genética , Clostridioides , Toxinas Bacterianas/genética , Estudos Transversais , Filogenia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Infecções por Clostridium/epidemiologia , China/epidemiologia , Macrolídeos , Genômica
7.
Mol Immunol ; 140: 167-174, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34717146

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has become the most important pathogen of hospital-acquired (HA) or community-acquired (CA) infections. However, it is unclear of the cytokines responsible for pathological hyper-inflammation in sepsis related cytokine storm for MRSA infection. In this study, we selected typical HA-MRSA strain (YNSA163: ST239-t030-SCCmecⅢ) and two CA-MRSA isolates (YNSA7: ST59-t439-SCCmecⅣa and YNSA53: ST59-t437-SCCmecⅤb) from our previous research, infected on BALB/c mice, and analyzed the cytokine storm patterns during infection process. The animal experiments revealed the most serious lethal effect on BALB/c mice caused by YNSA7 strain infection, followed by YNSA53, and no BALB/c mice died for YNSA163 infection. Histopathological analyses revealed that lung was the most seriously damaged organs, followed by spleen and kidney, especially for CA-MRSA infection. The severe inflammatory reactions, tissue destruction, and massive exudation of inflammatory mediators and cells could be identified in CA-MRSA strains infected mice. Interleukin-6 (IL-6) and IL-10 were both highly expressed in spleen and lung of YNSA7 and YNSA53 dead cases compared with YNSA53 survived and YNSA163 cases, which demonstrated cytokine storm pattern for CA-MRSA strains infection. The results of IL-6 intervention experiment verified that the enhanced IL-6 secretion was responsible for the host lethality of YNSA7 infection. RNA-sequencing results among three MRSA isolates indicated most of the differentially expressed genes referred to cellular process, metabolism and genetic information processing of bacteria. Specifically, clpP, chp chemotaxis inhibit, fnbB, pathogencity island protein and virulence associated protein E were highly expressed in YNSA7 strain. In general, CA-MRSA strains provoked cytokine storm on BALB/c mice led to severe infection and lethality, the up-regulated of some virulence genes might play important role in pathogenesis.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Síndrome da Liberação de Citocina/microbiologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/microbiologia , Animais , Infecções Comunitárias Adquiridas/genética , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Modelos Animais de Doenças , Interleucina-6/metabolismo , Estimativa de Kaplan-Meier , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/patologia , Transcriptoma/genética
8.
BMC Microbiol ; 21(1): 264, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600473

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen for human infection. Hospital-acquired (HA) and community-acquired (CA) MRSA infections are serious clinical problems worldwide. In this study, we selected typical HA-MRSA strain and CA-MRSA isolates from our previous research and compared their phenotypic and pathogenic abilities both in vitro and in vivo. RESULTS: ST59-t437-SCCmecIVa (YNSA7) and ST59-t437-SCCmecVb (YNSA53) belonged to two prevalent subclones of CA-MRSA, while ST239-t030-SCCmecIII (YNSA163) was an HA-MRSA epidemic clone in Southwest China. ST59-t437 strains demonstrated faster growth ability, higher survival rate resistance to human blood, and more toxin secretion levels and cytotoxicity than ST239-t030. The virulence and regulatory genes of hld, psm-α, RNAIII, agrA, and crtN were highly expressed on CA-MRSA isolates, especially the ST59-t437-SCCmecIVa subclone. However, the ST239-t030 strain had the strongest adhesion and biofilm ability among these MRSA bacteria. Animal experiments revealed the most serious lethal effect on BALB/c mice caused by the YNSA7 strain infection. The survival rates of BALB/c mice infected with the three MRSA strains were 16.7, 50.0 and 100.0% for YNSA7, YNSA53 and YNSA163, respectively. Histopathological analyses of infected animals indicated that the lungs were the most seriously damaged organs, especially for ST59-t437 MRSA. Severe inflammatory reactions, tissue destruction, and massive exudation of inflammatory mediators and cells could be identified in ST59-t437 strain-infected animals. CONCLUSIONS: In general, ST59-t437 strains showed higher pathogenic ability than the ST239-t030 isolate, while ST239-t030 MRSA revealed the features prevalent in hospital settings, specifically for adhesion and biofilm ability.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Animais , China , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sobrevida
9.
Bioengineered ; 12(1): 2836-2850, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34227905

RESUMO

Angiotensin I-converting enzyme 2 (ACE2), type II transmembrane serine protease 2 and 4 (TMPRSS2 and TMPRSS4) are important receptors for SARS-CoV-2 infection. In this study, the full-length tree shrewACE2 gene was cloned and sequenced, and its biological information was analyzed. The expression levels of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs of the tree shrew were detected. The results showed that the full-length ACE2 gene in tree shrews was 2,786 bp, and its CDS was 2,418 bp, encoding 805 amino acids. Phylogenetic analysis based on the CDS of ACE2 revealed that tree shrews were more similar to rabbits (85.93%) and humans (85.47%) but far from mice (82.81%) and rats (82.58%). In silico analysis according to the binding site of SARS-CoV-2 with the ACE2 receptor of different species predicted that tree shrews had potential SARS-CoV-2 infection possibility, which was similar to that of rabbits, cats and dogs but significantly higher than that of mice and rats. In addition, various tissues or organs of tree shrews expressed ACE2, TMPRSS2 and TMPRSS4. Among them, the kidney most highly expressed ACE2, followed by the lung and liver. The esophagus, lung, liver, intestine and kidney had relatively high expression levels of TMPRSS2 and TMPRSS4. In general, we reported for the first time the expression of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs in tree shrews. Our results revealed that tree shrews could be used as a potential animal model to study the mechanism underlying SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/etiologia , Proteínas de Membrana/genética , SARS-CoV-2 , Serina Endopeptidases/genética , Tupaiidae/genética , Tupaiidae/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Bioengenharia , COVID-19/enzimologia , COVID-19/genética , Biologia Computacional , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Homologia Estrutural de Proteína , Distribuição Tecidual , Tupaiidae/virologia
10.
Emerg Microbes Infect ; 10(1): 687-699, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33682630

RESUMO

Clostridioides difficile is the predominant antibiotic-associated enteropathogen associated with diarrhoea or pseudomembranous colitis in patients worldwide. Previously, we identified C. difficile RT078 isolates (CD21062) from elderly patients in China, including two new ribotype strains (CD10010 and CD12038) belonging to the ST11 group, and their genomic features were also investigated. This study compared sporulation, spore germination, toxin expression, flagellar characteristics, and adhesion among these strains in vitro and analysed their pathogenic ability in vivo using animal models. The results showed sporulation and spore germination did not significantly differ among the three C. difficile strains. CD10010 and CD12038 showed higher transcriptional levels of toxins until 48 h; thereafter, the transcriptional levels of toxins remained constant among RT078, CD10010, and CD12038. RT078 showed a loss of flagellum and its related genes, whereas CD12038 showed the highest motility in vitro. Both CD10010 and CD12038 initially showed flg phase OFF, and the flagellar switch reversed to phase ON after 48 h in swim agar. Flagellar proteins and toxins were both upregulated when flg phase OFF changed to flg phase ON status, enhancing their pathogenic ability. CD12038 showed the highest adhesion to Hep-2 cells. Histopathology and inflammation scores demonstrated that CD12038 caused the most severe tissue damage and infection in vivo. The new ribotype strains, particularly CD12038, exhibit higher pathogenic ability than the typical RT078 strain, both in vitro and in vivo. Therefore, more attention should be paid to this new C. difficile strain in epidemiological research; further studies are warranted.


Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , China , Clostridioides difficile/classificação , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Enterocolite Pseudomembranosa/microbiologia , Feminino , Proteínas Filagrinas , Humanos , Masculino , Camundongos Endogâmicos BALB C , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Tupaiidae , Virulência
11.
BMC Microbiol ; 20(1): 260, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819295

RESUMO

BACKGROUND: Clostridioides difficile is a major cause of antibiotic associated diarrhea. Several animal models are used to study C. difficile infection (CDI). The tree shrew has recently been developed as a model of primate processes. C. difficile infection has not been examined in tree shrews. We infected tree shrews with hyper-virulent C. difficile strains and examined the alterations in gut microbiota using 16S rRNA gene sequencing. RESULTS: C. difficile colonized the gastrointestinal tract of tree shrew and caused diarrhea and weight loss. Histopathologic examination indicated structures and mucosal cell destruction in ileal and colonic tissues. The gut microbial community was highly diversity before infection and was dominated by Firmicutes, Fusobacteria, Bacteroidetes, and Proteobacteria. Antibiotic administration decreased the diversity of the gut microbiota and led to an outgrowth of Lactobacillus. The relative abundance of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Lachnospiraceae, Enterobacteriaceae, Escherichia, Blautia, and Tyzzerella increased following C. difficile infection. These taxa could be biomarkers for C. difficile colonization. CONCLUSIONS: In general, the disease symptoms, histopathology, and gut microbiota changes following C. difficile infection in tree shrews were similar to those observed in humans.


Assuntos
Bactérias/classificação , Clostridioides difficile/patogenicidade , Infecções por Clostridium/veterinária , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Tupaiidae/microbiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/isolamento & purificação , Infecções por Clostridium/tratamento farmacológico , DNA Bacteriano/genética , DNA Ribossômico/genética , Diarreia/microbiologia , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Filogenia , Redução de Peso
12.
BMC Microbiol ; 20(1): 70, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228454

RESUMO

BACKGROUND: It has been performed worldwidely to explore the potential of animals that might be a reservoir for community associated human infections of Clostridioides difficile. Several genetically undistinguished PCR ribotypes of C. difficile from animals and human have been reported, illustrating potential transmission of C. difficile between them. Pig and calf were considered as the main origins of C. difficile with predominant RT078 and RT033, respectively. As more investigations involved, great diversity of molecular types from pig and calf were reported in Europe, North American and Australia. However, there were quite limited research on C. difficile isolates from meat animals in China, leading to non-comprehensive understanding of molecular epidemiology of C. difficile in China. RESULTS: A total of 55 C. difficile were isolated from 953 animal stool samples, within which 51 strains were from newborn dairy calf less than 7 days in Shandong Province. These isolates were divided into 3 STs and 6 RTs, of which ST11/RT126 was predominant type, and responsible for majority antibiotic resistance isolates. All the isolates were resistant to at least one tested antibiotics, however, only two multidrug resistant (MDR) isolates were identified. Furthermore, erythromycin (ERY) and clindamycin (CLI) were the two main resistant antibiotics. None of the isolates were resistant to vancomycin (VAN), metronidazole (MTZ), tetracycline (TET), and rifampin (RIF). CONCLUSIONS: In this study, we analyzed the prevalence, molecular characters and antibiotic resistance of C. difficile from calf, sheep, chicken, and pig in China. Some unique features were found here: first, RT126 not RT078 were the dominant type from baby calf, and none isolates were got from pig; second, on the whole, isolates from animals display relative lower resistant rate to these 11 tested antibiotics, compared with isolates from human in China in our previous report. Our study helps to deep understanding the situation of C. difficile from economic animals in China, and to further study the potential transmission of C. difficile between meat animals and human.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/classificação , Infecções por Clostridium/epidemiologia , Farmacorresistência Bacteriana , Animais , Animais Recém-Nascidos , Bovinos , Galinhas , China/epidemiologia , Clindamicina/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Eritromicina/farmacologia , Fezes/microbiologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem Molecular , Prevalência , Ovinos , Suínos
13.
PLoS One ; 15(2): e0229125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084183

RESUMO

Proteus spp. are commensal gastrointestinal bacteria in many hosts, but information regarding the mutual relationships between these bacteria and their hosts is limited. The tree shrew is an alternative laboratory animal widely used for human disease research. However, little is known about the relationship between Proteus spp. and tree shrews. In this study, the complete genome sequencing method was used to analyse the characteristics of Proteus spp. isolated from tree shrews, and comparative genomic analysis was performed to reveal their relationships. The results showed that 36 Proteus spp. bacteria were isolated, including 34 Proteus mirabilis strains and two Proteus vulgaris strains. The effective rate of sequencing was 93.53%±2.73%, with an average GC content of 39.94%±0.25%. Briefly, 3682.89±90.37, 2771.36±36.01 and 2832.06±42.49 genes were annotated in the NCBI non-redundant nucleotide database (NR), SwissProt database and KEGG database, respectively. The high proportions of macrolide-, vancomycin-, bacitracin-, and tetracycline-resistance profiles of the strains were annotated in the Antibiotic Resistance Genes Database (ARDB). Flagella, lipooligosaccharides, type 1 fimbriae and P fimbriae were the most abundantly annotated virulence factors in the Virulence Factor Database (VFDB). SNP variants indicated high proportions of base transitions (Ts), homozygous mutations (Hom) and non-synonymous mutations (Non-Syn) in Proteus spp. (P<0.05). Phylogenetic analysis of Proteus spp. and other references revealed high genetic diversity for strains isolated from tree shrews, and host specificity of Proteus spp. bacteria was not found. Overall, this study provided important information on characteristics of genome for Proteus spp. isolated from tree shrews.


Assuntos
Proteus/genética , Tupaiidae/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Adulto Jovem
14.
BMC Infect Dis ; 20(1): 137, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054452

RESUMO

BACKGROUND: Currently, Staphylococcus aureus is one of the most important pathogens worldwide, especially for methicillin-resistant S. aureus (MRSA) infection. However, few reports referred to patients' MRSA infections in Yunnan province, southwest China. METHODS: In this study, we selected representative MRSA strains from patients' systemic surveillance in Yunnan province of China, performed the genomic sequencing and compared their features, together with some food derived strains. RESULTS: Among sixty selective isolates, forty strains were isolated from patients, and twenty isolated from food. Among the patients' strains, sixteen were recognized as community-acquired (CA), compared with 24 for hospital-acquired (HA). ST6-t701, ST59-t437 and ST239-t030 were the three major genotype profiles. ST6-t701 was predominated in food strains, while ST59-t437 and ST239-t030 were the primary clones in patients. The clinical features between CA and HA-MRSA of patients were statistical different. Compared the antibiotic resistant results between patients and food indicated that higher antibiotic resistant rates were found in patients' strains. Totally, the average genome sizes of 60 isolates were 2.79 ± 0.05 Mbp, with GC content 33% and 84.50 ± 0.20% of coding rate. The core genomes of these isolates were 1593 genes. Phylogenetic analysis based on pan-genome and SNP of strains showed that five clustering groups were generated. Clustering ST239-t030 contained all the HA-MRSA cases in this study; clustering ST6-t701 referred to food and CA-MRSA infections in community; clustering ST59-t437 showed the heterogeneity for provoking different clinical diseases in both community and hospital. Phylogenetic tree, incorporating 24 isolates from different regions, indicated ST239-t030 strains in this study were more closely related to T0131 isolate from Tianjin, China, belonged to 'Turkish clade' from Eastern Europe; two groups of ST59-t437 clones of MRSA in Yunnan province were generated, belonged to the 'Asian-Pacific' clone (AP) and 'Taiwan' clone (TW) respectively. CONCLUSIONS: ST239-t030, ST59-t437 and ST6-t701 were the three major MRSA clones in Yunnan province of China. ST239-t030 clonal Yunnan isolates demonstrated the local endemic of clone establishment for a number of years, whereas ST59-t437 strains revealed the multi-origins of this clone. In general, genomic study on epidemic clones of MRSA in southwest China provided the features and evolution of this pathogen.


Assuntos
Infecção Hospitalar/microbiologia , Genômica/métodos , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/genética , Adolescente , Adulto , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , China/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Feminino , Microbiologia de Alimentos , Genoma Bacteriano/genética , Genótipo , Humanos , Masculino , Meticilina/efeitos adversos , Meticilina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Sequenciamento Completo do Genoma , Adulto Jovem
15.
BMC Microbiol ; 19(1): 203, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477004

RESUMO

BACKGROUND: Tree shrew is a novel laboratory animal with specific characters for human disease researches in recent years. However, little is known about its characteristics of gut microbial community and intestinal commensal bacteria. In this study, 16S rRNA sequencing method was used to illustrate the gut microbiota structure and commensal Enterobacteriaceae bacteria were isolated to demonstrate their features. RESULTS: The results showed Epsilonbacteraeota (30%), Proteobacteria (25%), Firmicutes (19%), Fusobacteria (13%), and Bacteroidetes (8%) were the most abundant phyla in the gut of tree shrew. Campylobacteria, Campylobacterales, Helicobacteraceae and Helicobacter were the predominant abundance for class, order, family and genus levels respectively. The alpha diversity analysis showed statistical significance (P < 0.05) for operational taxonomic units (OTUs), the richness estimates, and diversity indices for age groups of tree shrew. Beta diversity revealed the significant difference (P < 0.05) between age groups, which showed high abundance of Epsilonbacteraeota and Spirochaetes in infant group, Proteobacteria in young group, Fusobacteria in middle group, and Firmicutes in senile group. The diversity of microbial community was increased followed by the aging process of this animal. 16S rRNA gene functional prediction indicated that highly hot spots for infectious diseases, and neurodegenerative diseases in low age group of tree shrew (infant and young). The most isolated commensal Enterobacteriaceae bacteria from tree shrew were Proteus spp. (67%) and Escherichia coli (25%). Among these strains, the antibiotic resistant isolates were commonly found, and pulsed-field gel electrophoresis (PFGE) results of Proteus spp. indicated a high degree of similarity between isolates in the same age group, which was not observed for other bacteria. CONCLUSIONS: In general, this study made understandings of the gut community structure and diversity of tree shrew.


Assuntos
Enterobacteriaceae/isolamento & purificação , Microbioma Gastrointestinal , Tupaia/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/fisiologia , Fezes/microbiologia , Filogenia , Simbiose
16.
Front Microbiol ; 10: 1184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191498

RESUMO

Yersinia enterocolitica is a major agent of foodborne diseases worldwide. Prophage plays an important role in the genetic evolution of the bacterial genome. Little is known about the genetic information about prophages in the genome of Y. enterocolitica, and no pathogenic Y. enterocolitica prophages have been described. In this study, we induced and described the genomes of six prophages from pathogenic Y. enterocolitica for the first time. Phylogenetic analysis based on whole genome sequencing revealed that these novel Yersinia phages are genetically distinct from the previously reported phages, showing considerable genetic diversity. Interestingly, the prophages induced from O:3 and O:9 Y. enterocolitica showed different genomic sequences and morphology but highly conserved among the same serotype strains, which classified into two diverse clusters. The three long-tailed Myoviridae prophages induced from serotype O:3 Y. enterocolitica were highly conserved, shared ≥99.99% identity and forming genotypic cluster A; the three Podoviridae prophages induced from the serotype O:9 strains formed cluster B, also shared more than 99.90% identity with one another. Cluster A was most closely related to O:5 non-pathogenic Y. enterocolitica prophage PY54 (61.72% identity). The genetic polymorphism of these two kinds of prophages and highly conserved among the same serotype strains, suggested a possible shared evolutionary past for these phages: originated from distinct ancestors, and entered pathogenic Y. enterocolitica as extrachromosomal genetic components during evolution when facing selective pressure. These results are critically important for further understanding of phage roles in host physiology and the pathology of disease.

17.
PLoS One ; 14(2): e0212774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30807598

RESUMO

The tree shrew (Tupaia belangeri) has been proposed as an alternative laboratory animal to primates in biomedical research in recent years. However, characteristics of the tree shrew gut virome remain unclear. In this study, the metagenomic analysis method was used to identify the features of gut virome from fecal samples of this animal. Results showed that 5.80% of sequence reads in the libraries exhibited significant similarity to sequences deposited in the viral reference database (NCBI non-redundant nucleotide databases, viral protein databases and ACLAME database), and these reads were further classified into three major orders: Caudovirales (58.0%), Picornavirales (16.0%), and Herpesvirales (6.0%). Siphoviridae (46.0%), Myoviridae (45.0%), and Podoviridae (8.0%) comprised most Caudovirales. Picornaviridae (99.9%) and Herpesviridae (99.0%) were the primary families of Picornavirales and Herpesvirales, respectively. According to the host types and nucleic acid classifications, all of the related viruses in this study were divided into bacterial phage (61.83%), animal-specific virus (34.50%), plant-specific virus (0.09%), insect-specific virus (0.08%) and other viruses (3.50%). The dsDNA virus accounted for 51.13% of the total, followed by ssRNA (33.51%) and ssDNA virus (15.36%). This study provides an initial understanding of the community structure of the gut virome of tree shrew and a baseline for future tree shrew virus investigation.


Assuntos
Bases de Dados de Proteínas , Intestinos/virologia , Tupaiidae/virologia , Proteínas Virais/genética , Vírus , Animais , Vírus/classificação , Vírus/genética
18.
Microbiologyopen ; 8(4): e00693, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29978594

RESUMO

Larus ridibundus, a migratory wild bird, has become one of the most popular gull species in southwest China in recent years. There has been no information on the gut microbiota and intestinal pathogenic bacteria configuration in wild L. ridibundus, even though the public are in close contact with this bird. In this study, 16S rRNA amplicon-sequencing methods were used to describe the microbial community structure and intestinal pathogenic bacteria were isolated to identify their characteristics. The taxonomic results revealed that Firmicutes (86%), Proteobacteria (10%), and Tenericutes (3%) were the three most abundant phyla in the gut of L. ridibundus. Enterococcaceae, Enterobacteriaceae, and Mycoplasmataceae were the most predominant families, respectively. The number of operational taxonomic units (OTUs), the richness estimates and diversity indices of microbiota, was statistically different (p < 0.05). However, beta diversity showed that no statistical significance (p > 0.05) between all the fecal samples. The most frequently isolated intestinal pathogenic bacteria from L. ridibundus were enteropathogenic Escherichia coli (32%) and Salmonella (21%). Pulsed-field gel electrophoresis (PFGE) results of Salmonella species revealed a high degree of similarity between isolates, which was not observed for other species. None of the potentially pathogenic isolates were identical to human-isolated counterparts suggesting that there was little cross-infection between humans and gulls, despite close proximity. In brief, this study provided a baseline for future L. ridibundus microbiology analysis, and made an understanding of the intestinal bacterial community structure and diversity.


Assuntos
Charadriiformes/microbiologia , Microbioma Gastrointestinal , Intestinos/microbiologia , Migração Animal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Charadriiformes/fisiologia , China , DNA Bacteriano/genética , Fezes/microbiologia , Filogenia , RNA Ribossômico 16S/genética
19.
BMC Microbiol ; 18(1): 91, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157758

RESUMO

BACKGROUND: Staphylococcal food poisoning (SFP) is one of the most common food-borne diseases in the world. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and spa typing methods were used to characterize Staphylococcus aureus isolates from food surveillance during 2013-2015 in southwest China, and Staphylococcal cassette chromosome mec (SCCmec) typing was used for methicillin-resistant S. aureus (MRSA). Isolates were also examined for their antibiotic resistance and carriage of virulence genes. RESULTS: Isolation rate of S. aureus was 2.60% during the three years' surveillance and 29.50% of them were MRSA. All the S. aureus had hla genes (100%), 14.34% of the strains had tst, and 16.73% had PVL. 163 PFGE-SmaI patterns, 41 ST types and 36 spa types were obtained for all the S. aureus. Among them, ST6-t701 (13.15%), ST7-t091 (12.75%), ST59-t437 (9.96%) and ST5-t002 (7.57%) were the prevalent genotypes. Most of MRSA in this study belonged to SCCmec IV and V, accounted for 74.32% and 20.27% respectively. ST6-SCCmec IV-t701 (36.50%) was the most prevalent clone among isolates from food, followed by ST59-SCCmec V-t437 (20.30%), ST5-SCCmec IV-t002 (12.20%) and ST59-SCCmec IV-t437 (12.20%). Some strains had the identical PFGE patterns, ST and spa types with isolates from patients. CONCLUSIONS: S. aureus isolated from food in southwest China displayed heterogeneity. Isolates had the same genotype profiles with isolates from patients, indicating high homology.


Assuntos
Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Epidemiologia Molecular , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano , Farmacorresistência Bacteriana Múltipla/genética , Eletroforese em Gel de Campo Pulsado/métodos , Enterotoxinas/genética , Exotoxinas/genética , Genes Bacterianos/genética , Genótipo , Proteínas Hemolisinas/genética , Humanos , Leucocidinas/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Tipagem de Sequências Multilocus/métodos , Proteínas de Ligação às Penicilinas/genética , Prevalência , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/classificação , Superantígenos/genética , Virulência/genética
20.
Front Microbiol ; 9: 905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867816

RESUMO

Vibrio cholerae O1 strains taken from the repository of Yunnan province, southwest China, were abundant and special. We selected 70 typical toxigenic V. cholerae (69 O1 and one O139 serogroup strains) isolated from Yunnan province, performed the pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and MLST of virulence gene (V-MLST) methods, and evaluated the resolution abilities for typing methods. The ctxB subunit sequence analysis for all strains have shown that cholera between 1986 and 1995 was associated with mixed infections with El Tor and El Tor variants, while infections after 1996 were all caused by El Tor variant strains. Seventy V. cholerae obtained 50 PFGE patterns, with a high resolution. The strains could be divided into three groups with predominance of strains isolated during 1980s, 1990s, and 2000s, respectively, showing a good consistency with the epidemiological investigation. We also evaluated two MLST method for V. cholerae, one was used seven housekeeping genes (adk, gyrB, metE, pntA, mdh, purM, and pyrC), and all the isolates belonged to ST69; another was used nine housekeeping genes (cat, chi, dnaE, gyrB, lap, pgm, recA, rstA, and gmd). A total of seven sequence types (STs) were found by using this method for all the strains; among them, rstA gene had five alleles, recA and gmd have two alleles, and others had only one allele. The virulence gene sequence typing method (ctxAB, tcpA, and toxR) showed that 70 strains were divided into nine STs; among them, tcpA gene had six alleles, toxR had five alleles, while ctxAB was identical for all the strains. The latter two sequences based typing methods also had consistency with epidemiology of the strains. PFGE had a higher resolution ability compared with the sequence based typing method, and MLST used seven housekeeping genes showed the lower resolution power than nine housekeeping genes and virulence genes methods. These two sequence typing methods could distinguish some epidemiological special strains in local area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...