Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104941, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343701

RESUMO

The serum- and glucocorticoid-induced kinase 1 (SGK1) promotes cell survival under stress conditions and facilitates the emergence of drug resistance in cancer. The underlying mechanisms of these observations are not fully understood. In this study, we found that SGK1 activity is suppressed by the action of the S/T phosphatases PP5 and PP2A, which constantly dephosphorylate SGK1. Using newly developed anti-phospho SGK1 antibodies and inhibitors of phosphatases, we determined that the high degree of dephosphorylation is caused by two factors: the tendency of SGK1 to unfold, which makes it dependent on Hsp90 chaperone complexes composed of four proteins, Hsp90/CDC37/PP5/SGK1, and where the phosphatase PP5 persistently dephosphorylates SGK1 within the complex. SGK1 binding to PP2A regulatory subunits B55γ and B55δ brings PP2A catalytic subunit close to exposed SGK1 phosphoresidues. A further association of phosphorylated pS37-FAM122A-an endogenous inhibitor of PP2A-to the holoenzyme diminishes dephosphorylation of SGK1 mediated by PP2A. Our study also reveals that genotoxic stress can reverse the dominant impact of phosphatases over kinases by activating the DNA-dependent protein kinase, which enhances mTORC2 activity directed to SGK1. Thus, our results provide insight into a molecular pathway that enables SGK1 to gain phosphorylation and catalytic activity and promote cell survival, potentially diminishing the efficacy of cancer treatments. As the DNA damage response operates in many cancer cells and is further induced by chemotherapies, the findings of this study could have significant implications for the development of novel cancer therapies targeting SGK1.


Assuntos
Dano ao DNA , Fosfoproteínas Fosfatases , Proteínas Serina-Treonina Quinases , Dano ao DNA/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Ativação Enzimática/fisiologia , Sobrevivência Celular
2.
J Cell Mol Med ; 26(10): 2852-2865, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35393773

RESUMO

Serum-glucocorticoid-induced kinase-1 (SGK1) regulates ion homeostasis and promotes survival under stress conditions. The expression of SGK1 is under transcriptional and post-translational regulations that are frequently altered in cancer and immune disorders. We report that an N-terminal amphipathic alpha-helix determines SGK1 expression levels through two distinct mechanisms. It tethers SGK1 to intracellular organelles generating a large pool of membrane-bound SGK1, which is differentially stabilized in lipid droplets (LD) in fed conditions or degraded in the endoplasmic reticulum by ER-phagy in starvation. Association of the α-helix to organelles does not depend on dedicated receptors or special phospholipids rather, it is intrinsic to its physicochemical properties and depends on the presence of bulky hydrophobic residues for attachment to LDs. The second mechanism is recruitment of protein-chaperones that recognize the α-helix as an unfolded protein promoting survival of the cytosolic SGK1 fraction. Together, the findings unveil an unexpected link between levels of energy storage and abundance of SGK1 and how changes in calorie intake could be used to modulate SGK1 expression, whereas the inhibition of molecular chaperones could serve as an additional enhancer in the treatment of malignancies and autoimmune disorders with high levels of SGK1 expression.


Assuntos
Autofagossomos , Gotículas Lipídicas , Retículo Endoplasmático/metabolismo , Glucocorticoides/metabolismo , Gotículas Lipídicas/metabolismo , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...