Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 443(2): 214-21, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24018340

RESUMO

Epigenetic modifications of the genome, such as DNA methylation and posttranslational modifications of histone proteins, contribute to gene regulation. Growing evidence suggests that histone methyltransferases are associated with the development of various human diseases, including cancer, and are promising drug targets. High-quality generic assays will facilitate drug discovery efforts in this area. In this article, we present a liquid chromatography/mass spectrometry (LC/MS)-based S-adenosyl homocysteine (SAH) detection assay for histone methyltransferases (HMTs) and its applications in HMT drug discovery, including analyzing the activity of newly produced enzymes, developing and optimizing assays, performing focused compound library screens and orthogonal assays for hit confirmations, selectivity profiling against a panel of HMTs, and studying mode of action of select hits. This LC/MS-based generic assay has become a critical platform for our methyltransferase drug discovery efforts.


Assuntos
Cromatografia Líquida/métodos , Descoberta de Drogas/métodos , Histona-Lisina N-Metiltransferase/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ensaios Enzimáticos/métodos , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , S-Adenosil-Homocisteína/análise , S-Adenosil-Homocisteína/metabolismo
2.
Anal Biochem ; 423(1): 171-7, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22342622

RESUMO

A homogeneous time-resolved fluorescence (HTRF)-based binding assay has been established to measure the binding of the histone methyltransferase (HMT) G9a to its inhibitor CJP702 (a biotin analog of the known peptide-pocket inhibitor, BIX-01294). This assay was used to characterize G9a inhibitors. As expected, the peptide-pocket inhibitors decreased the G9a-CJP702 binding signal in a concentration-dependent manner. In contrast, the S-adenosyl-L-methionine (SAM)-pocket compounds, SAM and sinefungin, significantly increased the G9a-CJP702 binding signal, whereas S-adenosyl-L-homocysteine (SAH) showed minimal effect. Enzyme kinetic studies showed that CJP702 is an uncompetitive inhibitor (vs. SAM) that has a strong preference for the E:SAM form of the enzyme. Other data presented suggest that the SAM/sinefungin-induced increase in the HTRF signal is secondary to an increased E:SAM or E:sinefungin concentration. Thus, the G9a-CJP702 binding assay not only can be used to characterize the peptide-pocket inhibitors but also can detect the subtle conformational differences induced by the binding of different SAM-pocket compounds. To our knowledge, this is the first demonstration of using an uncompetitive inhibitor as a probe to monitor the conformational change induced by compound binding with an HTRF assay.


Assuntos
Cromatografia Líquida de Alta Pressão , Corantes Fluorescentes/química , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , S-Adenosil-Homocisteína/metabolismo , Espectrometria de Massas em Tandem , Adenosina/análogos & derivados , Adenosina/química , Azepinas/química , Domínio Catalítico , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Humanos , Cinética , Ligação Proteica , Quinazolinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...