Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 393: 122406, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32172059

RESUMO

Light irradiation with suitable quality and intensity could influence the success of phytoremediation by improving the biomass yield of plants. However, mechanisms involved in this influence on the contaminant accumulation and translocation ability of plants have rarely been studied. Five light combinations with different red (R) and blue (B) ratios (0, 10, 50, 75 and 100 % blue) at the same intensity (220 µmol m-2 s-1) were used to assist phytoremediation using Noccaea caerulescens, and the change in physicochemical characteristics and enzymatic activities of soils after phytoremediation were evaluated. Compared with the control, the light combinations and monochromic blue light significantly increased the activities of soil ureases, invertases, and phosphatases, whereas monochromic red light strongly inhibited the activities of these enzymes, because different light irradiations altered the formation and excretion of carbohydrates from plants for soil microorganism consumption. Plants under B50R50 treatment accumulated the highest concentrations of metals, but their chlorophyll concentrations and lipid peroxidation were similar to those other species with lower metal concentrations. Hence, light with a proper blue/red ratio can simultaneously improve the physicochemical characteristics and enzymatic activities of soils, increase the metal uptake capacity and oxidation resistance of plants, and reduce the leaching risk during phytoremediation processes.


Assuntos
Brassicaceae/efeitos da radiação , Luz , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental/efeitos da radiação , Brassicaceae/crescimento & desenvolvimento , Brassicaceae/metabolismo , Clorofila/metabolismo , Monoéster Fosfórico Hidrolases/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/efeitos da radiação , Urease/química , beta-Frutofuranosidase/química
2.
Chemosphere ; 226: 891-897, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31509918

RESUMO

Eucalyptus globulus pre-treated by static magnetic fields of 30, 60, 120, 150 and 400 mT (mT) before sowing were used in a 45-day experiment to remediate soil containing Cd, Hg, Pb, Zn, Cr and Cu. The influence of magnetic fields on its remediation efficiency was evaluated. Magnetic fields with strength of 30, 60, 120 and 150 mT increased the biomass yield of the species by 3.1, 19.4, 48.1 and 60.9%, respectively, while 400 mT decreased the yield by 16.7%. Comparing with the control exposed only to the earth's geomagnetic field, all plants pre-treated by static magnetic field had significantly higher metal concentrations with the highest values achieved in the field of 400 mT. Higher transpiration rate of the plants along with exposure to static magnetic fields induced lower soil moisture content and was beneficial to environmental control because it could reduce the leachate during the phytoremediation process. Among all static magnetic field treatments, 150 mT was the best to improve the phytoremediation and alleviate the environmental risk, which shortened the time to purify Cd, Pb and Cu by 27.8-73.2%, 27.3-74.7% and 2.5-50.6%, respectively and intercepted 31.6-86.1% of the leachate. Therefore, static magnetic field with appropriate intensity is a suitable candidate to improve phytoremediation efficiency through enhancing the biomass production, toxin uptake and leachate interception.


Assuntos
Biodegradação Ambiental , Biomassa , Eucalyptus/fisiologia , Campos Magnéticos , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Eucalyptus/crescimento & desenvolvimento
3.
Chemosphere ; 216: 661-668, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30391887

RESUMO

Hyperaccumulators can mobilize all metals in soil through secreting exudates to form soluble compounds but only hyperaccumulate part of them. Metals that cannot be accumulated are defined as non-hyperaccumulated metals and can increase the leaching risk in phytoremediation. Cd and Zn hyperaccumulator Noccaea caerulescens (formerly Thlaspi caerulescens) was utilized to remediate multi-metal polluted soil in the present study, and the leaching risk of non-hyperaccumulated metals including Cu and Pb was investigated during the phytoremediation process. Comparing with Thlaspi arvense, a non-hyperaccumulator, N. caerulescens significantly decreased the concentrations of Cd and Zn in leachate gathered from precipitation simulation experiments without electric field, but meanwhile dramatically increased the concentrations of Cu and Pb in soil solution. Electric field with low (2 V) and moderate (4 V) voltages increased the biomass yield and metal uptake capacity of N. caerulescens simultaneously and therefore further reduced the concentrations of Cd and Zn in the leachate. Although the volume of leachate decreased significantly in pots with electric field, the leaching risk of Pb and Cu was deteriorated. Thus, decontaminating multi-metal polluted soil with electric field and hyperaccumulator should be conducted with caution due to potential secondary environmental risk caused by activated non-hyperaccumulated metals.


Assuntos
Metais/química , Poluentes do Solo/química , Solo/química , Biodegradação Ambiental , Fatores de Risco , Poluentes do Solo/análise
4.
Chemosphere ; 185: 386-393, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28709043

RESUMO

Soil samples containing excess Cd (0.82 mg kg-1), Pb (92.7 mg kg-1) and Cu (72.7 mg kg-1) relative to their corresponding safe thresholds (0.3, 80 and 50 mg kg-1, respectively) from a notorious e-waste disposing and recycling place in southern China were phytoremediated with EDTA addition to evaluate the promotion effects of cytokinin on the remediation efficiency of Eucalyptus globulus. Biomass production of the plant, evapotranspiration amount of the soil, metals accumulation in plant organs and the volume of leachate under various treatments were compared. Relative to the planting control, EDTA application shortened the time required for Cd, Pb and Cu decontamination by 1.7-5.5 times but led to significantly more leachate (996 vs 1256 mL), indicating the negative influence of the chelate treatment on the species and the surrounding environment. The foliar application of cytokinin can expand the advantage and alleviate the adverse impact of individual EDTA application simultaneously as manifested by the increased biomass yield, less time consumption for purification and decreased leachate volume. Cytokinin accelerated the transpiration rate of the plant proved by the least volume of leachate in individual cytokinin treatment. The major factors for effective phytoremediation were the resistance of species to high concentrations of contaminants and less environmental risks generation during the remediation processes. Therefore, synergistic use of such components provides more efficient decontamination of metals and more security for the environment.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Citocininas/farmacologia , Ácido Edético/farmacologia , Eucalyptus/metabolismo , Poluentes do Solo/farmacocinética , Biomassa , China , Eucalyptus/crescimento & desenvolvimento , Metais Pesados/análise , Metais Pesados/isolamento & purificação , Metais Pesados/farmacocinética , Eliminação de Resíduos , Risco , Poluentes do Solo/análise , Poluentes do Solo/isolamento & purificação
5.
Environ Sci Pollut Res Int ; 24(3): 3131-3141, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27858274

RESUMO

Guiyu is a well-known electronic waste dismantling and recycling town in south China. Concentrations and distribution of the 21 mineral elements and 16 polycyclic aromatic hydrocarbons (PAHs) collected there were evaluated. Principal component analyses (PCA) applied to the data matrix of PAHs in the soil extracted three major factors explaining 85.7% of the total variability identified as traffic emission, coal combustion, and an unidentified source. By using metallic or metalloid element concentrations as variables, five principal components (PCs) were identified and accounted for 70.4% of the information included in the initial data matrix, which can be denoted as e-waste dismantling-related contamination, two different geological origins, anthropogenic influenced source, and marine aerosols. Combining the 21 metallic and metalloid element datasets with the 16 PAH concentrations can narrow down the coarse source and decrease the unidentified contribution to soil in the present study and therefore effectively assists the source identification process.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Reciclagem , Poluentes do Solo , China , Carvão Mineral , Resíduo Eletrônico , Solo
6.
Ecotoxicology ; 25(4): 646-54, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26846211

RESUMO

Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas.


Assuntos
Biodegradação Ambiental , Ácido Edético/química , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Quelantes , Eucalyptus/fisiologia , Metais Pesados/análise , Metais Pesados/química , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química
7.
Bull Environ Contam Toxicol ; 96(2): 259-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499324

RESUMO

A long-term field experiment was designed to assess remediation efficiency and ecological risk of phytoremediation of Cd under different cultivation systems with or without ethylene diamine tetraacetic acid (EDTA). EDTA can significantly improve the phytoremediation effectiveness of a historically polluted e-waste dismantling site through enhancing Cd uptake by plants in all cultivation systems along with higher ecological risks to different receptors especially in the presence of Cicer arietinum (chickpea). Moisture content at each layer of soil profile under Eucalyptus globules L. cultivated sites was consistently lower than under chickpea monoculture as a result of E. globules' high water use efficiency. Besides low soil moisture, E. globules can intercept more Cd-rich leachate than chickpea regardless of the presence of EDTA. E. globules could be used for Cd phytoremediation as they can take full advantage of EDTA and decrease ecological risk caused by the chelator.


Assuntos
Cádmio/metabolismo , Quelantes/química , Cicer/metabolismo , Ácido Edético/química , Eucalyptus/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cádmio/análise , Cádmio/química , China , Ecologia , Medição de Risco , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...