Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 96(24): e7191, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28614261

RESUMO

BACKGROUND: Studies have investigated rs1128503, rs1045642, and rs2032582 in multidrug resistance protein 1 (MDR1) for association with susceptibility to idiopathic nephrotic syndrome (INS) and steroid resistance. However, because these findings were inconsistent, we performed a meta-analysis to determine whether there was evidence of a role of these MDR1 variants in INS. METHODS: The PubMed, Embase, and Web of Science databases were systematically searched to identify studies that examined MDR1 polymorphisms with susceptibility to INS and/or to steroid resistance. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by a fixed-effects or random-effects model based on heterogeneity. RESULTS: We selected 9 case-control studies that included 928 patients with INS, of which steroid resistance data were available for 724 (236 were steroid resistant and 488 were steroid sensitive), and 879 healthy controls. All subjects were children. No significant relationships between these polymorphisms and INS susceptibility were identified. Significantly increased risk of steroid resistance was observed with rs1128503 allelic (OR = 1.49, 95% CI = 1.20-1.86) and genotypic (OR = 1.97, 95% CI = 1.18-3.30; OR = 2.03, 95% CI = 1.43-2.88) comparisons, and with allelic (OR = 1.56, 95% CI = 1.05-2.31) and genotypic (OR = 2.85, 95% CI = 1.15-7.07; OR = 2.21, 95% CI = 1.01-4.8) comparisons to rs2032582 in Caucasian populations. However, this association between rs2032582 and steroid resistance was not robust enough to withstand corrections for multiple comparisons. Similarly, we found that the rs1128503T-rs2032582G-rs1045642C (T-G-C) haplotype was associated with an increased risk of steroid resistance (OR = 2.02, 95% CI = 1.13-3.59), while the wild-type C-G-C haplotype was associated with a decreased risk (OR = 0.32, 95% CI = 0.12-0.88) in Caucasians; however, these findings were not significant following adjustments for multiple comparisons. CONCLUSIONS: MDR1 rs1128503, rs1045642, and rs2032582 polymorphisms are not associated with INS susceptibility; however, there is evidence of an association between rs1128503 and increased risk of steroid resistance in children with INS, which indicates MDR1 may play a role in steroid resistance found in children with INS.


Assuntos
Resistência a Medicamentos/genética , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Polimorfismo de Nucleotídeo Único , Esteroides/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Predisposição Genética para Doença , Humanos
2.
Clin Sci (Lond) ; 130(5): 349-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26574480

RESUMO

Renal tubule cells can recover after they undergo AKI (acute kidney injury). An incomplete repair of renal tubules can result in progressive fibrotic CKD (chronic kidney disease). Studies have revealed the relationship between tubular epithelial cells and kidney fibrogenesis. However, the underlying mechanism remains unclear. Hippo pathway components were evaluated in complete/incomplete repair of I/R (ischaemia/reperfusion) AKI rat models, HK-2 cells and AKI human renal biopsy samples. We found that the expression levels of the Hippo pathway components changed dynamically during kidney regeneration and fibrogenesis in rat models of I/R-induced AKI and human renal biopsy samples. The transcription cofactor YAP (Yes-associated protein) might be a key effector of renal regeneration and fibrogenesis. Our results showed further that YAP might elicit both beneficial and detrimental effects on I/R AKI. After I/R injury occurred, YAP could promote the repair of the injured epithelia. The constant YAP increase and activation might be related to interstitial fibrosis and abnormal renal tubule differentiation. These results indicate that the proper modulation of the Hippo pathway, specifically the transcription cofactor YAP, during repair might be a potent therapeutic target in AKI-CKD transition after I/R injury.


Assuntos
Injúria Renal Aguda/fisiopatologia , Proteínas Reguladoras de Apoptose/fisiologia , Rim/irrigação sanguínea , Traumatismo por Reperfusão/fisiopatologia , Injúria Renal Aguda/etiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Idoso , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Digitoxina/farmacologia , Feminino , Fibrose , Técnicas de Silenciamento de Genes/métodos , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Rim/fisiologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos Sprague-Dawley , Regeneração/fisiologia , Traumatismo por Reperfusão/complicações , Transdução de Sinais/fisiologia , Fatores de Transcrição , Regulação para Cima/efeitos dos fármacos , Proteínas de Sinalização YAP , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...