Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
J Neuroinflammation ; 21(1): 227, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285282

RESUMO

Cognitive impairment is a common issue among human patients undergoing surgery, yet the neural mechanism causing this impairment remains unidentified. Surgical procedures often lead to glial cell activation and neuronal hypoexcitability, both of which are known to contribute to postoperative cognitive dysfunction (POCD). However, the role of neuron-glia crosstalk in the pathology of POCD is still unclear. Through integrated transcriptomics and proteomics analyses, we found that the complement cascades and microglial phagocytotic signaling pathways are activated in a mouse model of POCD. Following surgery, there is a significant increase in the presence of complement C3, but not C1q, in conjunction with presynaptic elements. This triggers a reduction in excitatory synapses, a decline in excitatory synaptic transmission, and subsequent memory deficits in the mouse model. By genetically knockout out C3ar1 or inhibiting p-STAT3 signaling, we successfully prevented neuronal hypoexcitability and alleviated cognitive impairment in the mouse model. Therefore, targeting the C3aR and downstream p-STAT3 signaling pathways could serve as potential therapeutic approaches for mitigating POCD.


Assuntos
Complemento C3 , Modelos Animais de Doenças , Transtornos da Memória , Camundongos Knockout , Microglia , Animais , Camundongos , Microglia/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Complemento C3/metabolismo , Complemento C3/genética , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Receptores de Complemento/metabolismo , Receptores de Complemento/genética , Masculino , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Sinapses/metabolismo , Sinapses/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
2.
Front Neurosci ; 18: 1428085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328423

RESUMO

The glymphatic system is a functional cerebrospinal fluid circulatory system that uses peri-arterial space for inflow of cerebrospinal fluid and peri-venous space for efflux of cerebrospinal fluid from brain parenchyma. This brain-wide fluid transport pathway facilitates the exchange between cerebrospinal fluid and interstitial fluid and clears metabolic waste from the metabolically active brain. Multiple lines of work show that the glymphatic system is crucial to normal brain functions, and the dysfunction of the glymphatic system is closely associated with various neurological disorders, including aging, neurodegeneration, and acute brain injury. Currently, it is common to explore the functional and molecular mechanisms of the glymphatic system based on animal models. The function of glymphatic system during perioperative period is affected by many factors such as physiological, pathological, anesthetic and operative methods. To provide a reference for the interpretation of the results of glymphatic system studies during perioperative period, this article comprehensively reviews the physiological and pathological factors that interfere with the function of the glymphatic system during perioperative period, investigates the effects of anesthetic drugs on glymphatic system function and the potential underlying mechanisms, describes operative methods that interfere with the function of the glymphatic system, and potential intervention strategies based on the glymphatic system. Future, these variables should be taken into account as critical covariates in the design of functional studies on the glymphatic system.

3.
Adv Healthc Mater ; : e2401373, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118566

RESUMO

Chemotherapy is the cornerstone of triple-negative breast cancer. The poor effectiveness and severe neuropathic pain caused by it have a significant impact on the immune system. Studies confirmed that immune cells in the tumor microenvironment (TME), have critical roles in tumor immune regulation and prognosis. In this study, it is revealed that the painless administration of Esketamine, combined with Cisplatin (DDP), can exert an anti-tumor effect, which is further boosted by the hydrogel delivery system. It is also discovered that Esketamine combined with DDP co-loaded in Poloxamer Hydrogel (PDEH) induces local immunity by increasing mature Dendritic Cells (mDCs) and activated T cells in PDEH group while the regulatory T cells (Tregs) known as CD4+CD25+FoxP3+decreased significantly. Finally, , CD8+ and CD4+ T cells in the spleen exhibited a significant increase, suggesting a lasting immune impact of PDEH. This study proposes that Esketamine can serve as a painless immune modulator, enhancing an anti-tumor effect while co-loaded in poloxamer hydrogel with DDP. Along with improving immune cells in the microenvironment, it can potentially alleviate anxiety and depression. With its outstanding bio-safety profile, it offers promising new possibilities for painless clinical therapy.

4.
Exp Neurol ; 381: 114880, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38972370

RESUMO

Research has revealed that prolonged or repeated exposure to isoflurane, a common general anesthetic, can lead to cognitive and behavioral deficiencies, particularly in early life. The brain contains a wealth of LanCL1, an antioxidant enzyme that is thought to mitigate oxidative stress. Nevertheless, its precise function in mammals remains uncertain. This study uncovered a decrease in the expression of LanCL1 due to prolonged isoflurane anesthesia, accompanied by anesthesia-induced neurotoxicity in vivo and in vitro. To better understand LanCL1's essential function, LanCL1 overexpressing adenoviruses were employed to increase LanCL1 levels. The outcomes were analyzed using western blot and immunofluorescence methods. According to the findings, extended exposure to isoflurane anesthesia may lead to developmental neurotoxicity in vivo and in vitro. The anesthesia-induced neurotoxicity was concomitant with a reduction in LanCL1 expression. Moreover, the study revealed that overexpression of LanCL1 can mitigate the neurotoxic effects of isoflurane anesthesia, resulting in improved synaptic growth, less reactive oxygen species, enhanced cell viability and rescued memory deficits in the developing brain. In conclusion, prolonged anesthesia-induced LanCL1 deficiency could be responsible for neurotoxicity and subsequent cognitive impairments in the developing brain. Additional LanCL1 counteracts this neurotoxic effect and protects neurons from long-term isoflurane anesthesia.


Assuntos
Anestésicos Inalatórios , Isoflurano , Neurônios , Isoflurano/toxicidade , Animais , Anestésicos Inalatórios/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Síndromes Neurotóxicas/etiologia , Camundongos Endogâmicos C57BL , Feminino , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células Cultivadas
5.
Neural Regen Res ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38993135

RESUMO

ABSTRACT: Postoperative cognitive dysfunction is a severe complication of the central nervous system that occurs after anesthesia and surgery, and has received attention for its high incidence and effect on the quality of life of patients. To date, there are no viable treatment options for postoperative cognitive dysfunction. The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research. To identify the signaling mechanisms contributing to postoperative cognitive dysfunction, we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset, which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus 3 days after tibial fracture. The dataset was enriched in genes associated with the biological process "regulation of immune cells," of which Chill was identified as a hub gene. Therefore, we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fracture surgery. Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 1 24 hours post-surgery, and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests. In addition, protein expression levels of proinflammatory factors (interleukin-1ß and inducible nitric oxide synthase), M2-type macrophage markers (CD206 and arginase-1), and cognition-related proteins (brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B) were measured in hippocampus by western blotting. Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment, downregulated interleukin-1ß and nducible nitric oxide synthase expression, and upregulated CD206, arginase-1, pNR2B, and brain-derived neurotropic factor expression compared with vehicle treatment. Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1. Collectively, our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus. Therefore, recombinant chitinase-3-like protein 1 may have therapeutic potential for postoperative cognitive dysfunction.

6.
Cell Rep ; 43(5): 114238, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748875

RESUMO

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Assuntos
Dieta Hiperlipídica , Proteína Semelhante a ELAV 1 , Absorção Intestinal , Triglicerídeos , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas/genética , Aciltransferases , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/metabolismo , Obesidade/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese
7.
BMC Med ; 22(1): 189, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715017

RESUMO

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Assuntos
Células Endoteliais , Glucose , Hiperalgesia , Privação do Sono , Medula Espinal , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Glucose/metabolismo , Células Endoteliais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Masculino , Privação do Sono/complicações , Glicólise/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
8.
BMC Anesthesiol ; 24(1): 158, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658828

RESUMO

OBJECTIVE: Frailty poses a crucial risk for postoperative complications in the elderly, with sarcopenia being a key component. The impact of sarcopenia on postoperative outcomes after total hip arthroplasty (THA) is still unclear. This study investigated the potential link between sarcopenia and postoperative outcomes among elderly THA patients. METHODS: Totally 198 older patients were enrolled in this study. Sarcopenia in this group was determined by assessing the skeletal muscle index, which was measured using computed tomography at the 12th thoracic vertebra and analyzed semi-automatically with MATLAB R2020a. Propensity score matching (PSM) was employed to evaluate postoperative complications of grade II and above (POCIIs). RESULTS: The variables balanced using PSM contained age, sex and comorbidities including hypertension, diabetes, hyperlipidemia and COPD. Before PSM, sarcopenic patients with reduced BMI (24.02 ± 0.24 vs. 27.11 ± 0.66, P < 0.001) showed higher POCIIs rates (48.31% vs. 15%, P = 0.009) and more walking-assisted discharge instances (85.96% vs. 60%, P = 0.017) compared with non-sarcopenia patients. After PSM, this group maintained reduced BMI (23.47 ± 0.85 vs. 27.11 ± 0.66, P = 0.002), with increased POCIIs rates (54.41% vs. 15%, P = 0.002) and heightened reliance on walking assistance at discharge (86.96% vs. 60%, P = 0.008). CONCLUSION: Sarcopenia patients exhibited a higher incidence of POCIIs and poorer physical function at discharge. Sarcopenia could serve as a valuable prognostic indicator for elderly patients undergoing elective THA.


Assuntos
Artroplastia de Quadril , Procedimentos Cirúrgicos Eletivos , Complicações Pós-Operatórias , Pontuação de Propensão , Sarcopenia , Humanos , Sarcopenia/epidemiologia , Masculino , Feminino , Idoso , Complicações Pós-Operatórias/epidemiologia , Procedimentos Cirúrgicos Eletivos/efeitos adversos , Idoso de 80 Anos ou mais , Estudos Retrospectivos
9.
J Neuroinflammation ; 21(1): 96, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627764

RESUMO

BACKGROUND: Gasdermin D (GSDMD)-mediated pyroptotic cell death is implicated in the pathogenesis of cognitive deficits in sepsis-associated encephalopathy (SAE), yet the underlying mechanisms remain largely unclear. Dynamin-related protein 1 (Drp1) facilitates mitochondrial fission and ensures quality control to maintain cellular homeostasis during infection. This study aimed to investigate the potential role of the GSDMD/Drp1 signaling pathway in cognitive impairments in a mouse model of SAE. METHODS: C57BL/6 male mice were subjected to cecal ligation and puncture (CLP) to establish an animal model of SAE. In the interventional study, mice were treated with the GSDMD inhibitor necrosulfonamide (NSA) or the Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1). Surviving mice underwent behavioral tests, and hippocampal tissues were harvested for histological analysis and biochemical assays at corresponding time points. Haematoxylin-eosin staining and TUNEL assays were used to evaluate neuronal damage. Golgi staining was used to detect synaptic dendritic spine density. Additionally, transmission electron microscopy was performed to assess mitochondrial and synaptic morphology in the hippocampus. Local field potential recordings were conducted to detect network oscillations in the hippocampus. RESULTS: CLP induced the activation of GSDMD, an upregulation of Drp1, leading to associated mitochondrial impairment, neuroinflammation, as well as neuronal and synaptic damage. Consequently, these effects resulted in a reduction in neural oscillations in the hippocampus and significant learning and memory deficits in the mice. Notably, treatment with NSA or Mdivi-1 effectively prevented these GSDMD-mediated abnormalities. CONCLUSIONS: Our data indicate that the GSDMD/Drp1 signaling pathway is involved in cognitive deficits in a mouse model of SAE. Inhibiting GSDMD or Drp1 emerges as a potential therapeutic strategy to alleviate the observed synaptic damages and network oscillations abnormalities in the hippocampus of SAE mice.


Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Animais , Masculino , Camundongos , Disfunção Cognitiva/metabolismo , Dinaminas/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Sepse/patologia , Encefalopatia Associada a Sepse/metabolismo , Transdução de Sinais
10.
J Cereb Blood Flow Metab ; 44(8): 1450-1466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38443763

RESUMO

Perioperative neurocognitive disorders (PND) refer to cognitive deterioration that occurs after surgery or anesthesia. Prolonged isoflurane exposure has potential neurotoxicity and induces PND, but the mechanism is unclear. The glymphatic system clears harmful metabolic waste from the brain. This study sought to unveil the functions of glymphatic system in PND and explore the underlying molecular mechanisms. The PND mice model was established by long term isoflurane anesthesia. The glymphatic function was assessed by multiple in vitro and in vivo methods. An adeno-associated virus was used to overexpress AQP4 and TGN-020 was used to inhibit its function. This research revealed that the glymphatic system was impaired in PND mice and the blunted glymphatic transport was closely associated with the accumulation of inflammatory proteins in the hippocampus. Increasing AQP4 polarization could enhance glymphatic transport and suppresses neuroinflammation, thereby improve cognitive function in the PND model mice. However, a marked impaired glymphatic inflammatory proteins clearance and the more severe cognitive dysfunction were observed when decreasing AQP4 polarization. Therefore, long-term isoflurane anesthesia causes blunted glymphatic system by inducing AQP4 depolarization, enhanced the AQP4 polarization can alleviate the glymphatic system malfunction and reduce the neuroinflammatory response, which may be a potential treatment strategy for PND.


Assuntos
Anestésicos Inalatórios , Aquaporina 4 , Disfunção Cognitiva , Sistema Glinfático , Isoflurano , Animais , Aquaporina 4/metabolismo , Isoflurano/farmacologia , Sistema Glinfático/metabolismo , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/induzido quimicamente , Masculino , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/farmacologia , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos
11.
BMC Anesthesiol ; 24(1): 92, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443828

RESUMO

OBJECTIVE: To study how Pneumoperitoneum under Trendelenburg position for robot-assisted laparoscopic surgery impact the perioperative respiratory parameters, diagrammatic function, etc. METHODS: Patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position and patients undergoing general surgery in the supine position were selected. The subjects were divided into two groups according to the type of surgery: robot-assisted surgery group and general surgery group. ① Respiratory parameters such as lung compliance, oxygenation index, and airway pressure were recorded at 5 min after intubation, 1 and 2 h after pneumoperitoneum. ② Diaphragm excursion (DE) and diaphragm thickening fraction (DTF) were recorded before entering the operating room (T1), immediately after extubation (T2), 10 min after extubation (T3), and upon leaving the postanesthesia care unit (T4). ③ Peripheral venous blood (5 ml) was collected before surgery and 30 min after extubation and was analyzed by enzyme-linked immunosorbent assay to determine the serum concentration of Clara cell secretory protein 16 (CC16) and surfactant protein D (SP-D). RESULT: ① Compared with the general surgery group (N = 42), the robot-assisted surgery group (N = 46) presented a significantly higher airway pressure and lower lung compliance during the surgery(P < 0.001). ② In the robot-assisted surgery group, the DE significantly decreased after surgery (P < 0.001), which persisted until patients were discharged from the PACU (P < 0.001), whereas the DTF only showed a transient decrease postoperatively (P < 0.001) and returned to its preoperative levels at discharge (P = 0.115). In the general surgery group, the DE showed a transient decrease after surgery(P = 0.011) which recovered to the preoperative levels at discharge (P = 1). No significant difference in the DTF was observed among T1, T2, T3, and T4. ③ Both the general and robot-assisted surgery reduced the postoperative serum levels of SP-D (P < 0.05), while the robot-assisted surgery increased the postoperative levels of CC16 (P < 0.001). CONCLUSION: Robot-assisted laparoscopic surgery significantly impairs postoperative diaphragm function, which does not recover to preoperative levels at PACU discharge. Elevated levels of serum CC16 after surgery suggest potential lung injury. The adverse effects may be attributed to the prolonged Trendelenburg position and pneumoperitoneum during laparoscopic surgery.


Assuntos
Laparoscopia , Pneumoperitônio , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Diafragma , Decúbito Inclinado com Rebaixamento da Cabeça , Proteína D Associada a Surfactante Pulmonar , Respiração
12.
Talanta ; 274: 125994, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547841

RESUMO

Since the outbreak of corona virus disease 2019 (COVID-19), this pandemic has caused severe death and infection worldwide. Owing to its strong infectivity, long incubation period, and nonspecific symptoms, the early diagnosis is essential to reduce risk of the severe illness. The electrochemical biosensor, as a fast and sensitive technique for quantitative analysis of body fluids, has been widely studied to diagnose different biomarkers caused at different infective stages of COVID-19 virus (SARS-CoV-2). Recently, many reports have proved that nanomaterials with special architectures and size effects can effectively promote the biosensing performance on the COVID-19 diagnosis, there are few comprehensive summary reports yet. Therefore, in this review, we will pay efforts on recent progress of advanced nanomaterials-facilitated electrochemical biosensors for the COVID-19 detections. The process of SARS-CoV-2 infection in humans will be briefly described, as well as summarizing the types of sensors that should be designed for different infection processes. Emphasis will be supplied to various functional nanomaterials which dominate the biosensing performance for comparison, expecting to provide a rational guidance on the material selection of biosensor construction for people. Finally, we will conclude the perspective on the design of superior nanomaterials-based biosensors facing the unknown virus in future.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Eletroquímicas , Nanoestruturas , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Nanoestruturas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/métodos , Teste para COVID-19/instrumentação
13.
Ann Neurol ; 96(1): 74-86, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501714

RESUMO

OBJECTIVE: To determine the association between the preoperative Bioenergetic Health Index (BHI) of platelets and the occurrence of postoperative delirium (POD) in elderly patients. METHODS: Elderly patients scheduled for major abdominal surgery under general anesthesia were included. The presence of POD was assessed within the 3 days after surgery. Seahorse XF analysis and transmission electron microscopy were utilized to evaluate the mitochondrial metabolism and morphology of platelets. RESULTS: A total of 20 out of 162 participants developed POD. Participants with POD showed lower preoperative Mini-Mental State Examination scores and total protein levels, fewer educational years, longer surgery duration, higher mean platelet volume, and lower platelet BHI compared with those without POD. Damaged mitochondria with swollen appearance and distorted cristae was detected in platelets from participants with POD. Preoperative platelet BHI was independently associated with the occurrence of POD after adjusting for age, education, preoperative Mini-Mental State Examination score, preoperative mean platelet volume and total protein levels, surgical type and duration, and lymphocyte counts on the first postoperative day (OR 0.11, 95% CI 0.03-0.37, p < 0.001). The areas under the receiver operating curves for predicting POD were 0.83 (95% CI 0.76-0.88) for platelet BHI. It showed a sensitivity of 85.00% and specificity of 73.24%, with an optimal cutoff value of 1.61. Using a serial combination (mean platelet volume followed by BHI) yielded a sensitivity of 80.00% and specificity of 82.39%. INTERPRETATION: Preoperative platelet BHI was independently associated with the occurrence of POD in elderly patients and has the potential as a screening biomarker for POD risk. ANN NEUROL 2024;96:74-86.


Assuntos
Biomarcadores , Plaquetas , Mitocôndrias , Complicações Pós-Operatórias , Humanos , Idoso , Masculino , Feminino , Plaquetas/metabolismo , Biomarcadores/sangue , Mitocôndrias/metabolismo , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/sangue , Idoso de 80 Anos ou mais , Delírio/sangue , Delírio/diagnóstico , Delírio/etiologia
14.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516772

RESUMO

Remifentanil­induced hyperalgesia (RIH) is characterized by the emergence of stimulation­induced pain, including phenomena such as allodynia and thermal hyperalgesia following remifentanil infusion. As a sequence­specific DNA binding transcription factor, PAX6 positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system. It was hypothesized that puerarin could relieve RIH via targeting PAX6 to regulate transcription of transient receptor potential cation channel subfamily V Member 1 (TRPV1). A total of 32 rats were randomly divided into five groups, namely control group, RI group, RI + 10 mg/kg puerarin group (RI + puerarin10), RI + 20 mg/kg puerarin group (RI + puerarin20), and RI + 40 mg/kg puerarin group (RI + puerarin40). Mechanical and thermal hyperalgesia were tested at ­24, 2, 6, 24 and 48 h after remifentanil infusion. Following the sacrifice of rats after the last behavioral test, western blot was used to detect the expression levels of TRPV1 in the tissues; Immunofluorescence staining and western blotting were used to detect the expression of PAX6 in the spinal cord. PharmMapper and JASPAR were used to predict the binding sites of puerarin/PAX6/TRPV1. Chromatin immunoprecipitation­PCR and dual luciferase reporter assay were used to verify the targeting relationship between PAX6 and TRPV1. Immunofluorescence was used to detect the expression levels of TRPV1 and p­NR2B. The results revealed that puerarin (10, 20, 40 mg/kg) dose­dependently reduced thermal and mechanical hyperalgesia from 2 to 48 h after remifentanil infusion. Remifentanil infusion remarkably stimulated the expression of phosphorylated (p­)NR2B. Nevertheless, the increased amount of p­NR2B by RIH was dose­dependently suppressed by puerarin in rats. In conclusion, puerarin was revealed to attenuate postoperative RIH via targeting PAX6 to regulate the transcription of TRPV1.


Assuntos
Hiperalgesia , Isoflavonas , Animais , Ratos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Piperidinas/farmacologia , Ratos Sprague-Dawley , Remifentanil/efeitos adversos , Fator de Transcrição PAX6/efeitos dos fármacos , Fator de Transcrição PAX6/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
15.
Anesth Analg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38507554

RESUMO

BACKGROUND: Neuropathic pain (NP) is a highly challenging condition with complex pathological mechanisms, and the spinal gamma aminobutyric acid A receptor receptor plays a crucial role in its progression. Recent studies have revealed a potential interaction between neuroplastin 65 (NP65) and gamma aminobutyric acid A receptor α2 subunit (GABAAR-α2) on the cell surface. We hypothesize that NP65 is involved in the pathogenesis of NP by regulating the level of GABAAR-α2. METHODS: A chronic constrictive injury (CCI) pain model was established in male Sprague-Dawley rats to verify the change in spinal NP65 expression. Alterations in pain behavior and GABAAR-α2 protein expression were observed after intrathecal injection of NP65 overexpressing adeno-associated virus (AAV) in CCI rats. In vitro investigations on Neuroblastoma 2a cells, the effect of NP65 on GABAAR-α2 expression via the calcineurin-nuclear factor of activated T-cell 4 (CaN-NFATc4) signaling pathway was evaluated by manipulating NP65 expression. RESULTS: The expression level of NP65 protein and mRNA in the CCI group were significantly decreased (P < .05; analysis of variance [ANOVA]). After intrathecal injection of NP65, overexpression of AAV and pain behavior in CCI rats were significantly alleviated, and levels of GABAAR-α2 were upregulated. In vitro experiments verified alterations in the expression of GABAAR-α2, CaN, and phosphorylated NFATc4 on the application of NP65 with plasmid or small interfering RNA, respectively. After the application of the specific CaN inhibitor cyclosporine A (CsA), the changes in NP65 expression did not produce subsequent alterations in the expression of GABAAR-α2, CaN, or phosphorylated NFATc4 proteins. CONCLUSIONS: NP65 modulates the level of GABAAR-α2 through the CaN-NFATc4 signaling pathway, which may serve as the underlying mechanism of NP.

16.
Anesth Analg ; 139(2): 411-419, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241681

RESUMO

BACKGROUND: The microglial activation has been implicated in cancer-induced bone pain. Recent studies have revealed that microglia mediate synaptic pruning in the central nervous system, where the cluster of differentiation 47-signal regulatory protein α (CD47-SIRPα) axis creates a "don't eat me" signal and elicits an antiphagocytic effect to protect synapses against elimination. To date, the synaptic phagocytosis in microglia has never been investigated in the murine cancer-induced bone pain model. The present experiments sought to explore whether microglia phagocytize synapses in mice with bone cancer pain as well as the possible mechanisms. METHODS: Male C3H/HeN mice were used to induce bone cancer pain. Minocycline and S-ketamine were injected into D14. The number of spontaneous flinches (NSF) and paw withdrawal mechanical thresholds (PWMT) were measured on D0, D4, D7, D10, D14, D21, and D28. Hematoxylin and eosin staining presented bone lesions. Western blotting examined the Gephyrin, CD47, and SIRPα expression. Flow cytometry evaluated the proportion of SIRPα + cells in the spine. Immunofluorescence and 3-dimensional reconstruction showed the Gephyrin puncta inside microglial lysosomes. RESULTS: Mice embedded with tumor cells induced persistent spontaneous pain and mechanical hyperalgesia. Hematoxylin and eosin staining revealed bone destruction and tumor infiltration in marrow cavities. Microglia underwent a responsive and proliferative burst (t = -16.831, P < .001). Western blotting manifested lowered Gephyrin expression in the tumor group (D4, D7, D10, D14, D21, and D28: P < .001). Immunofluorescence and 3-dimensional reconstruction showed larger volumes of Gephyrin puncta inside microglial lysosomes (t = -23.273, P < .001; t = -27.997, P < .001). Treatment with minocycline or S-ketamine exhibited pain relief and antiphagocytic effects (t = -6.191, P < .001, t = -7.083, P < .001; t = -20.767, P < .001, t = -17.080, P < .001; t = 11.789, P < .001, t = 16.777, P < .001; t = 8.868, P < .001, t = 21.319, P < .001). Last but not least, the levels of CD47 and SIRPα proteins were downregulated (D10: P = .004, D14, D21, and D28: P < .001; D10, D14, D21, and D28: P < .001). Flow cytometry and immunofluorescence substantiated reduced microglial SIRPα (t = 11.311, P < .001; t = 12.189, P < .001). CONCLUSIONS: Microglia-mediated GABAergic synapse pruning in the spinal cord dorsal horn in bone cancer pain mice, which might be associated with the declined CD47-SIRPα signal. Our research uncovered an innovative mechanism that highlighted microglia-mediated synaptic phagocytosis in a murine cancer-induced bone pain model.


Assuntos
Neoplasias Ósseas , Antígeno CD47 , Dor do Câncer , Modelos Animais de Doenças , Camundongos Endogâmicos C3H , Microglia , Fagocitose , Receptores Imunológicos , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , Fagocitose/efeitos dos fármacos , Dor do Câncer/metabolismo , Dor do Câncer/etiologia , Dor do Câncer/fisiopatologia , Neoplasias Ósseas/complicações , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Camundongos , Receptores Imunológicos/metabolismo , Antígeno CD47/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/metabolismo , Minociclina/farmacologia , Comportamento Animal/efeitos dos fármacos
17.
Cell Biochem Biophys ; 82(2): 641-645, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38291169

RESUMO

BACKGROUND: Activation of Mas-related G protein-coupled receptor C (MrgC) receptors relieves pain, but also leads to ubiquitination of MrgC receptors. Ubiquitination mediates MrgC receptor endocytosis and degradation. However, MrgC degradation pathways and ubiquitin-linked chain types are not known. METHODS: N2a cells were treated with cycloheximide (CHX, protein synthesis inhibitor), Mg132 (proteasome inhibitor), 3-Methyladenine (3MA, autophagy lysosome inhibitor) and Chloroquine (CQ, autophagy lysosome inhibitor) to observe the half-life and degradation pathway of MrgC. The location of internalized MrgC receptors and lysosomes (Lyso-Tracker) was observed by immunofluorescence staining. N2a cells were transfected with Myc-MrgC and a series of HA-tagged ubiquitin mutants to study the ubiquitin-linked chain type of MrgC. RESULTS: The amount of MrgC protein decreased with time after CHX treatment of N2a cells. Autophagy lysosome inhibitors can inhibit the degradation of MrgC. The amount of MrgC protein decreased with time after CHX treatment of N2a cells. 3-MA and CQ inhibited the degradation of MrgC protein, whereas Mg-132 did not inhibit it. Partially internalized MrgC receptors were co-labeled with lysosomes. MrgC proteins have multiple topologies of ubiquitin-modified chains. CONCLUSION: As a member of the G protein-coupled receptor family, MrgC receptors can be degraded over time. The complex topology of the ubiquitin-linked chain mediates the lysosomal degradation of MrgC proteins.


Assuntos
Lisossomos , Proteólise , Ubiquitina , Lisossomos/metabolismo , Ubiquitina/metabolismo , Animais , Proteólise/efeitos dos fármacos , Camundongos , Autofagia/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Cloroquina/farmacologia , Linhagem Celular Tumoral , Leupeptinas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Cicloeximida/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
18.
Behav Brain Res ; 458: 114738, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37931707

RESUMO

Postoperative cognitive dysfunction (POCD) is characterized by impaired cognitive function following general anesthesia and surgery. Oxidative stress is a significant pathophysiological manifestation underlying POCD. Previous studies have reported that the decline of nicotinamide adenine dinucleotide (NAD+) -dependent sirtuin 1 (SIRT1) contributes to the activation of oxidative stress. In this study, we investigated whether pretreatment of nicotinamide mononucleotide (NMN), an NAD+ intermediate, improves oxidative stress and cognitive function in POCD. The animal model of POCD was established in C57BL/6 J mice through 6 h isoflurane anesthesia-induced cognitive impairment. Mice were intraperitoneally injected with NMN for 7 days prior to anesthesia, after which oxidative stress and cognitive function were assessed. The level of oxidative stress was determined using flow cytometry analysis and assey kits. The fear condition test and the Y-maze test were utilized to evaluate contextual and spatial memory. Our results showed that cognitive impairment and increased oxidative stress were observed in POCD mice, as well as downregulation of NAD+ levels and related protein expressions of SIRT1 and nicotinamide phosphoribosyltransferase (NAMPT) in the hippocampus. And NMN supplementation could effectively prevent the decline of NAD+ and related proteins, and reduce oxidative stress and cognitive disorders after POCD. Mechanistically, the findings suggested that protection on cognitive function mediated by NMN pretreatment in POCD mice may be regulated by NAD+-SIRT1 signaling pathway. This study indicated that NMN preconditioning reduced oxidative stress damage and alleviated cognitive impairment in POCD mice.


Assuntos
Anestesia , Disfunção Cognitiva , Isoflurano , Camundongos , Animais , Mononucleotídeo de Nicotinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , NAD , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/induzido quimicamente
19.
Neuropharmacology ; 245: 109813, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38110173

RESUMO

Patients with chronic pain commonly report impaired memory. Increasing evidence has demonstrated that inhibition of neurogenesis by neuroinflammation plays a crucial role in chronic pain-associated memory impairments. There is currently a lack of treatment strategies for this condition. An increasing number of clinical trials have reported the therapeutic potential of anti-inflammatory therapies targeting tumour necrosis factor-α (TNF-α) for inflammatory diseases. The present study investigated whether infliximab alleviates chronic pain-associated memory impairments in rats with chronic constriction injury (CCI). We demonstrated that infliximab alleviated spatial memory impairment and hyperalgesia induced by CCI. Furthermore, infliximab inhibited the activation of hippocampal astrocytes and microglia and decreased the release of proinflammatory cytokines in CCI rats. Furthermore, infliximab reversed the decrease in the numbers of newborn neurons and mature neurons in the dentate gyrus (DG) caused by chronic pain. Our data provide evidence that infliximab alleviates chronic pain-associated memory impairments, suppresses neuroinflammation and restores hippocampal neurogenesis in a CCI model. These facts indicate that infliximab may be a potential therapeutic agent for the treatment of chronic pain and associated memory impairments.


Assuntos
Dor Crônica , Humanos , Ratos , Animais , Infliximab/uso terapêutico , Dor Crônica/tratamento farmacológico , Dor Crônica/patologia , Doenças Neuroinflamatórias , Hipocampo/patologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Neurogênese
20.
Anesth Analg ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38009963

RESUMO

BACKGROUND: Dysfunction of the blood-spinal cord barrier (BSCB) contributes to the occurrence and development of neuropathic pain (NP). Previous studies revealed that the activation of cyclophilin A (CypA)-metalloproteinase-9 (MMP9) signaling pathway can disrupt the integrity of the blood-brain barrier (BBB) and aggravate neuroinflammatory responses. However, the roles of CypA-MMP9 signaling pathway on BSCB in NP have not been studied. This study aimed to investigate the effect of CypA on the structure and function of the BSCB and pain behaviors in mice with NP. METHODS: We first created the mouse chronic constriction injury (CCI) model, and they were then intraperitoneally injected with the CypA inhibitor cyclosporine A (CsA) or vehicle. Pain behaviors, the structure and function of the BSCB, the involvement of the CypA-MMP9 signaling pathway, microglia activation, and expression levels of proinflammatory factors in mice were examined. RESULTS: CCI mice presented mechanical allodynia and thermal hyperalgesia, impaired permeability of the BSCB, downregulated tight junction proteins, activated CypA-MMP9 signaling pathway, microglia activation, and upregulated proinflammatory factors, which were significantly alleviated by inhibition of CypA. CONCLUSIONS: Collectively, the CypA-MMP9 signaling pathway is responsible for CCI-induced NP in mice by impairing the structure and function of the BSCB, and activating microglia and inflammatory responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA