Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 243: 120414, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516078

RESUMO

Increased algal blooms and loss of aquatic vegetation are critical environmental issues associated with shallow lakes worldwide. The increase in organic matter (OM) in both macrophyte-dominated areas (MDAs) and algae-dominated areas (ADAs) has exacerbated these problems. Most OM in water is concentrated as suspended particulate matter (SPM), which eventually migrates to the sediment. However, the detailed origins and fates of OM in water-SPM-sediment systems with coexisting MDAs and ADAs remain unclear. Therefore, in this study, we conducted monthly field investigations in Lake Taihu, focusing on OM-migration patterns in an MDA and an ADA. The C/N mass ratios, δ13C contents, and OM compositions of the water, SPM, and sediment were analyzed. Our findings revealed that autochthonous sources of OM prevailed in water, whereas terrestrial sources prevailed in SPM and sediment. Rapid decomposition processes of microbial- and algae-derived dissolved OM were discovered along the water-SPM-sediment pathways in both areas. A trend towards a shift from macrophytes to algae in the MDA was also discovered. Overall, the entire lake underwent a burial process of OM in both types of areas, with mineralization mostly occurring during the algal-bloom seasons and more strongly in the ADA. Furthermore, we deduced that a decrease in the OM-burial rate, but an increase in the mineralization rate, might occur after a complete shift from a macrophyte- to an algae-dominated status. Such a shift might change the carbon-cycle process in eutrophic shallow lakes and should be given more attention in future research.


Assuntos
Lagos , Água , Monitoramento Ambiental , Material Particulado/análise , Sedimentos Geológicos , China
2.
Water Res ; 224: 119067, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108397

RESUMO

In shallow lakes, eutrophication leads to a shift of the macrophyte-dominated clear state towards an algae-dominated turbid state. Phosphorus (P) is a crucial element during this shift and is usually concentrated in the suspended particulate matter (SPM) in water. However, the dominant processes controlling internal P release in the algae- (ADA) and macrophyte-dominated (MDA) areas under the influence of P-concentrated SPM remains unclear. In this study, we conducted monthly field observations of P exchange across the sediment-water interface (SWI) with the deposition of SPM in the ADA and MDA of Lake Taihu. Results revealed that both algae- and macrophyte-originated SPM led to the depletion of oxygen across the SWI during summer and autumn. Redox-sensitive P (Fe-P) and organic P (Org-P) were the dominant mobile P fractions in both areas. High fluxes of P across the SWI were observed in both areas during the summer and autumn. However, the processes controlling P release were quite different. In MDA, P release was mostly controlled by a traditional Fe-P dissolution process influenced by the coupled cycling of iron, sulfur, and P. In the ADA, Org-P control was intensified with the deterioration of algal bloom status, accompanied with the dissolution of Fe-P. Evidence from the current study revealed that the dominant process controlling the internal P release might gradually shift from Fe-P to a coupled process of Fe-P and Org-P with the shift of the macrophyte- to an algae-dominated state in shallow eutrophic lakes. The differentiated processes in the MDA and ADA should be given more attention during future research and management of internal P loadings in eutrophic lakes.


Assuntos
Fósforo , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Eutrofização , Sedimentos Geológicos , Ferro , Lagos , Oxigênio , Material Particulado/análise , Fósforo/análise , Enxofre , Água , Poluentes Químicos da Água/análise
3.
Environ Pollut ; 246: 207-216, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30554127

RESUMO

Dredging is frequently implemented for the reduction of internal nitrogen (N) and phosphorus (P) loadings and the control of eutrophication. Residuals during dredging activities and external pollution loadings after dredging both commonly contribute to influence the effectiveness of dredging and have been widely discussed. In the current study, the exchanges of N and P across the sediment-water interface (SWI) to these two factors were compared in a six-month field incubation experiment. The results showed that the continuous deposition of external suspended particulate matter (SPM) led ammonium nitrogen (NH4+N) and soluble reactive phosphorus (SRP) fluxes across the newly formed SWI to increase by factors of 4.16 and 12.71, respectively, while residual material caused the same fluxes to increase by factors of 2.06 and 5.06. Both the deposition of external SPM and the residual matter led to higher increase of the fluxes of P across the SWI than those of the fluxes of N across the SWI after dredging. The SPM easily adsorbed P in the water due to extensive adsorption of water soluble organic matter (consisting primarily of easily-decomposed humic-like substances), iron, and aluminum. However, the decomposition of organic matter in the SPM after the deposition on the dredged sediment accelerated the dissolution of redox-sensitive P and organic P across the SWI after dredging. Both the increase in the fluxes of N and P across the SWI would further increase the concentrations of N and P in the overlying water and thereby aggravate the eutrophication status in lakes. More frequent dredging operations might be necessary to reduce the fluxes of N and P from the sediment due to the continuous influence of the external SPM and the residual matter.


Assuntos
Sedimentos Geológicos/análise , Lagos/química , Nitrogênio/análise , Material Particulado/química , Fósforo/análise , Poluentes Químicos da Água/análise , Adsorção , Monitoramento Ambiental/métodos , Eutrofização , Substâncias Húmicas/análise , Ferro , Ciclo do Nitrogênio , Oxirredução , Água/química
4.
Water Environ Res ; 90(11): 1956-1963, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486923

RESUMO

A year-long field investigation was carried out in the most heavily polluted bay of Lake Chaohu to assess the temporal exchanges of ammonium nitrogen () and soluble reactive phosphorus (SRP) across the sediment-water interface (SWI) and to provide remediation advises. Results showed that the monthly average fluxes of and SRP were 31.38 and 6.98 mg m-2 d-1, respectively, both of which were higher than those in many other hyper-eutrophic lakes around the world. The exchanges of and SRP were both closed related to the oxygen penetration. Low oxygen penetration depth and generally negative oxygen uptake rates provoked the dissolution of redox sensitive phosphorus and labile in the sediment and increased the fluxes. In addition, the generally higher fluxes during late spring to autumn should be noted during the reduction of internal loadings, when applicable techniques should be implemented accordingly to achieve better reduction effects.


Assuntos
Sedimentos Geológicos/química , Lagos/química , Nitrogênio/química , Fósforo/química , Água/química , Baías , Taiwan
5.
Environ Pollut ; 229: 879-886, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28774552

RESUMO

Dredging has been widely implemented in shallow lakes to reduce internal nitrogen (N) loading. The suspended particulate matter (SPM) coming from polluted rivers usually contains high levels of N and ultimately deposits on the dredged sediment surfaces near the river mouth. To study the influence of the riverine SPM on N exchange across the sediment-water interface (SWI) after dredging, a 360-day experiment was carried out comparing un-dredged and dredged sediments from Lake Chaohu, China. Dredged treatments showed a significant increase (p < 0.01) in total N concentrations in the sediments, while the deposition of SPM had little influence on labile NH4+-N concentrations. In addition, NH4+-N concentrations in pore-water and NH4+-N fluxes were significantly lower in dredged than in un-dredged sediments, despite the deposition of SPM. The oxygen production rates and the oxygen penetration depth in the dredged sediments were both higher than those in the un-dredged sediments. The increase of Nitrospira in dredged sediments was consistent with their decreased NH4+-N concentrations and fluxes across the SWI. Therefore, the oxidizing condition, increased oxygen production/consumption rates and Nitrospira relative abundance across the SWI were believed to be correlated with the low N exchange rates in dredged sediments. Dredging for reducing internal N loading in a river mouth area is therefore feasible, although the influence of the riverine SPM should be taken into account when aiming to achieve a long-term internal N loading reduction.


Assuntos
Monitoramento Ambiental , Ciclo do Nitrogênio , Nitrogênio/análise , Poluentes Químicos da Água/análise , Bactérias , China , Sedimentos Geológicos/química , Lagos , Material Particulado , Rios/química , Água
6.
Chemosphere ; 174: 39-45, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28157607

RESUMO

The Nanfei River is by many measures the most heavily polluted tributary to Lake Chaohu. In this study, the temporal occurrence and sources of four classes of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs), in suspended particulate matter (SPM) from the river mouth were investigated monthly during 2014. Results show that concentrations of all four POPs in SPM were higher than those in the sediment of Lake Chaohu. PBDEs (26.7 ng g-1 dry weight (dw)) were originated mainly from commercial deca-BDE mixtures. PCB concentrations (1.336 ng g-1 dw) were lower than those of sediments in many other water bodies worldwide. PAHs (2597 ng g-1 dw) and OCPs (57.38 ng g-1 dw) were the most common POPs. PAHs mainly had high molecular weights and originated from pyrolytic sources, with a small proportion of petrogenic origin. The predominant OCPs were DDTs, heptachlorepoxides, dieldrin, hexachlorocyclohexanes, hexachlorobenzene, and chlordanes. Most OCPs originated from historical use, except lindane. Generally, of all the POPs studied, those of primary ecological concern should be acenaphthene, fluorene, DDTs, and chlordanes. Higher concentrations of POPs were detected during winter and spring than in summer and autumn, probably because of the high river flow during the rainy season. The high concentration of POPs in the riverine SPM and the fractionation of POPs in the water and SPM of the river should be a focal point in the future study of Lake Chaohu.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Sedimentos Geológicos/análise , Lagos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Poluentes Químicos da Água/análise , China , Material Particulado
7.
Environ Pollut ; 219: 656-662, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27376989

RESUMO

In aquatic ecosystems, ecological processes such as organic matter mineralization and nutrient cycling are regulated by benthic O2 in sediments, and application of in situ techniques in field environments has the potential to better define the links between O2 dynamics and the unique biogeochemical phenomena occurring in these regions. The effects of benthic O2 on sediment nutrients release were identified on the basis of field specific observations conducted over one and a half years at Taihu Lake. Sediment dredging (SD) practices have sharply reworked the benthic boundary oxidation layer, and the oxygen penetration depth (OPD) in the SD responded as expected to the new-born surface, increasing immediately (7.5 ± 0.8 - 10.5 ± 0.6 mm) after dredging, then further increasing with an unusually high heterogeneity when a significant submersed macrophytes (SM) coverage of about 40% was implemented. Multiple correlation analysis revealed that OPD was responsible for PO43- and NH4+ release. A lower benthic oxygen flux was immediately observed in dredging-related sediments in the case of dredging compared to SM or the control (CK), which suggested that oxygen demand is low in the uppermost sediments because of the degradable fresh organic carbon removal. SD and SDSM implementation was most successful at continuously reducing the size of PO43- released from sediments over one and a half years, and a significant seasonal-dependent release was also observed. The direction of flux was consistent among SD and SDSM, suggesting the potential to reduce internal PO43- release even further with the invasion of SM communities. Our results indicated that ecological engineering practices could alleviate internal nutrient loads from the contaminated bottom sediment, which was probably in positive response to benthic oxygen changes.


Assuntos
Sedimentos Geológicos/química , Oxigênio/metabolismo , Fitoplâncton/metabolismo , China , Lagos/química , Oxirredução , Oxigênio/análise
8.
Environ Sci Pollut Res Int ; 23(6): 5268-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26561329

RESUMO

Emissions of nitrous oxide (N2O) from wetland ecosystems are globally significant and have recently received increased attention. However, relatively few direct studies of these emissions in response to water depth-related changes in sediment ecosystems have been conducted, despite the likely role they play as hotspots of N2O production. We investigated depth-related differential responses of the dissolved inorganic nitrogen distribution in Phragmites australis (Cav.) Trin. ex Steud. rhizosphere versus non-rhizosphere sediments to determine if they accelerated N2O emissions and the release of inorganic nitrogen. Changes in static water depth and P. australis growth both had the potential to disrupt the distribution of porewater dissolved NH4 (+), NO3 (-), and NO2 (-) in profiles, and NO3 (-) had strong surface aggregation tendency and decreased significantly with depth. Conversely, the highest NO2 (-) contents were observed in deep water and the lowest in shallow water in the P. australis rhizosphere. When compared with NO3 (-), NH4 (+), and NO2 (-), fluxes from the rhizosphere were more sensitive to the effects of water depth, and both fluxes increased significantly at a depth of more than 1 m. Similarly, N2O emissions were obviously accelerated with increasing depth, although those from the rhizosphere were more readily controlled by P. australis. Pearson's correlation analysis showed that water depth was significantly related to N2O emission and NO2 (-) fluxes, and N2O emissions were also strongly dependent on NO2 (-) fluxes (r = 0.491, p < 0.05). The results presented herein provide new insights into inorganic nitrogen biogeochemical cycles in freshwater sediment ecosystems.


Assuntos
Óxido Nitroso , Poaceae , Rizosfera , Áreas Alagadas , Monitoramento Ambiental , Óxido Nitroso/análise , Óxido Nitroso/química , Poaceae/metabolismo , Poaceae/microbiologia
9.
Huan Jing Ke Xue ; 36(12): 4444-54, 2015 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-27011979

RESUMO

Growth of rooted aquatic macrophytes was affected by the nature and composition of lake bottom sediments. Obviously, it has been recognized as an important ecological restoration measure by improving lake substrate and then reestablishing and restoring aquatic macrophytes in order to get rid of the environmental problem of lake. This study simulated five covering thickness to give an insight into the influence of substrate amelioration on Phragmites communis growth and photosynthetic fluorescence characteristics. The results showed that the total biomass, plant height, leaf length and leaf width of Phragmites communis under capping 5 cm were much more significant than those of capping 18 cm (P < 0.01), at the 120 d, the underground: shoot biomass ratio and fine root: underground biomass ratio were also much higher than those of other treatments (P < 0.05), which indicated that capping 18 cm treatment would significantly inhibit the growth of Phragmites communis , but the growth of control group Phragmites communis was slightly constrained by eutrophicated sediment. In addition, as the capping thickness growing, the underground: shoot biomass ratio of the plant would be reduced dramatically, in order to acquire much more nutrients from sediment for plant growing, the underground biomass of Phragmites communis would be preferentially developed, especially, the biomass of fine root. However, Photosystem II (PS II) photochemical efficiency (Fv/Fm), quantum yield (Yield), photochemical quenching (qP), non-photochemical quenching (qN) of Phragmites communis under different treatments had no significant differences (P > 0.05), furthermore, with much greater capping thickness, the photosynthesis structure of PS II would be much easier destroyed, and PS II would be protected by increasing heat dissipating and reducing leaf photosynthetic area and leaf light-captured pigment contents. In terms of the influence of sediment amelioration by soil exchange on the growth and photosynthetic fluorescence characteristics of Phragmites communis, plant growth could be effectively promoted under capping 2 cm and capping 5 cm by increasing the Eh value and nutrient content, whereas plant under capping 18 cm would be much easier adaptive to low-light stress in winter season, of which capping 2 cm treatment was conducive to enhance the initial slope of RLCs (α), maximum electron transport rate (ETRmax) and minimum saturating irradiance (Ek). With regard to the harness of environmental problem of lake, the eutrophication status of lake will be mitigated by using multi-ecological measures to control the internal nutrients content once the external loading was first effectively controlled.


Assuntos
Lagos , Fotossíntese , Poaceae/crescimento & desenvolvimento , Biomassa , Clima , Transporte de Elétrons , Fluorescência , Luz , Complexo de Proteína do Fotossistema II , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Estações do Ano , Solo
10.
J Hazard Mater ; 266: 1-9, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24374559

RESUMO

Flocculation is a promising method for controlling harmful algal blooms; however, little is known about the effects of algae deposition by flocculation on benthic oxygen (O2) and nutrient dynamics. In this study, we aimed to investigate the influence of cyanobacteria flocculation deposition on benthic O2 and phosphorus (P) dynamics and the role of tubificid worms in the process. Chitosan and sediment particles were used to flocculate and deposit cyanobacteria cells onto lake sediment. The impulse deposition of algal flocculation degraded the deposited algal cells, which decreased the O2 penetration depth in sediment and increased the O2 uptake rate. Algae deposition also increased the soluble reactive P (SRP) in pore water and loosely adsorbed P in sediment, and changed SRP flux. Tubificid worms transported algal cells deeper into the sediment, mitigated their degradation, and altered the O2 penetration depth, but not the O2 uptake rate. Tubificid worms enhanced the increase in pore-water SRP and loosely adsorbed P in sediment. Therefore, the deposition of algal flocculation modifies the benthic O2 and P dynamics, and tubificid worms can mitigate or enhance some of these processes.


Assuntos
Cianobactérias , Sedimentos Geológicos/análise , Oligoquetos , Oxigênio/análise , Fósforo/análise , Animais , China , Clorofila/análise , Clorofila A , Eutrofização , Floculação , Lagos
11.
Huan Jing Ke Xue ; 32(1): 88-95, 2011 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-21404669

RESUMO

To examine the impact of Corbicula fluminea on sediment properties and phosphorus dynamics across sediment-water interface in lake, the microcosm experiment was carried out with sediment and lake water from the estuary of Dapu River, a eutrophic area in Taihu Lake. Rhizon samplers were used to acquire pore water, and soluble reactive phosphorus (SRP) flux across sediment-water interface and sediment properties were determined. The activity of C. fluminea destroyed the initial sediment structure, mixed sediment in different depths, increased oxygen penetration depth, sediment water content, and total microbial activity in sediment. The downward movement of overlying water was enhanced by the activity of C. fluminea, which decreased Fe2+ in pore water by oxidation. The production of ferric iron oxyhydroxide adsorbed SRP from pore water and decreased SRP concentration in pore water, and this increased iron bound phosphorus in corresponding sediment. The emergence of C. fluminea accelerated SRP release from sediment to overlying water, and enhanced SRP flux increased with the rise of introduced C. fluminea density. Metabolization of C. fluminea might play an important role in accelerating SRP release.


Assuntos
Corbicula/fisiologia , Sedimentos Geológicos/análise , Fósforo/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Animais , Corbicula/metabolismo , Água Doce/análise
12.
J Environ Sci (China) ; 22(7): 961-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21174984

RESUMO

The regulatory effects of environmental factors on denitrification were studied in the sediments of Meiliang Bay, Taihu Lake, in a monthly sampling campaign over a one-year period. Denitrification rates were measured in slurries of field samples and enrichment experiments using the acetylene inhibition technique. Sediment denitrification rates in inner bay and outer bay ranged from 2.8 to 51.5 nmol N2/(g dw (dry weight) x hr) and from 1.5 to 81.1 nmol N2/(g dw x hr), respectively. Sediment denitrification rates were greatest in the spring and lowest in the summer and early autumn, due primarily to seasonal differences in nitrate concentration and water temperature. For each site, positive and linear relationships were regularly observed between denitrification rate and water column nitrate concentration. Of various environmental factors on denitrification that we assessed, nitrate was determined to be the key factor limiting denitrification rates in the sediments of Meiliang Bay. In addition, at the two sites denitrification rates were also regulated by temperature. The addition of organic substrates had no significant effect on denitrification rate, indicating that sediment denitrification was not limited by organic carbon availability in the sediments. Nitrate in the water column was depleted during summer and early autumn, and this suppressed effective removal of nitrogen from Taihu Lake by denitrification.


Assuntos
Desnitrificação , Sedimentos Geológicos/química , Estações do Ano , China , Nitratos/química , Temperatura
13.
Huan Jing Ke Xue ; 31(4): 939-45, 2010 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-20527174

RESUMO

In order to investigate the influence of sediment physical and chemical characteristics on the vertical distribution of NH4+, PO4(3-) and NO3(-) and their diffusive fluxes at sediment-water surface, pore water equilibrators (Peeper) were employed to obtain multiple pore water profiles from reed and bulrush sediments in Lake Nansihu wetland. The results showed that sediment properties in the planted reed and bulrush fields, i.e. water content, porosity, KCl-extractable NH4+ and NO3(-) were generally greater than those in seldom vegetation, and the porosity in 2-5 cm depth subsurface sediments increased by 57.5%, 34.6%, respectively. Nutrient profiles of NH4+ and PO4(3-) at sediment-water interface exhibited a nearly exponential increase with increasing depth including a concentration maximum at a 8 cm depth, where there was a spike in the NH4+ and PO4(3-) concentration. The diffusive flux (Jx) across the sediment-water interface could be calculated from Fick's first law. The flux calculations showed reed could effectively decreased NH4+ diffusive flux, and the NH4+ diffusive flux, the maximum flux 3.57-4.48 mg/(m2 x d) in reed field, was nearly three times greater than the minimum flux 0.90-1.24 mg/(m2 x d) in seldom vegetation. However, there was a narrow PO4(3-) flux range from 0.02 to 0.04 mg/(m2 x d) in three fields while NO3(-) concentration gradient showed an opposite pattern and diffusive flux occurred in one direction from the overlying bottom water to the sediment pore water. The correlative results suggested that extractable nutrient contents in sediments correlated with pore water content, therefore, controlling extractable nutrient contents appeared to a viable measure to avoid nutrient recontamination to overlying water in wetlands.


Assuntos
Sedimentos Geológicos/química , Plantas/metabolismo , Poluentes Químicos da Água/análise , Áreas Alagadas , China , Monitoramento Ambiental/métodos , Fósforo/análise , Fenômenos Fisiológicos Vegetais , Porosidade , Compostos de Amônio Quaternário/análise
14.
J Environ Sci (China) ; 22(11): 1674-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21235153

RESUMO

As a diagenetic progress, bioturbation influences solute exchange across the sediment-water interface (SWI). Different benthic animals have various mechanical activities in sediment, thereby they may have different effects on solute exchange across the SWI. This laboratory study examined the impacts of different benthic animals on phosphorus dynamics across the SWI. Tubificid worms and Chironomidae larvae were introduced as model organisms which, based on their mechanical activities, belong to upward-conveyors and gallery-diffusers, respectively. The microcosm simulation study was carried out with a continuous flow culture system, and all sediment, water, and worms and larvae specimens were sampled from Taihu Lake, China. To compare their bioturbation effects, the same biomass (17.1 g wet weight (ww)/m2) was adopted for worms and larvae. Worms altered no oxygen penetration depth in sediment, while larvae increased the O2 penetration depth, compared to the control treatment. Their emergence also enhanced sediment O2 uptake. The oxidation of ferrous iron in pore water produced ferric iron oxyhydroxides that adsorbed soluble reactive phosphorus (SRP) from the overlying water and pore water. Larvae built obviously oxidized tubes with about 2 mm diameter and the maximum length of 6 cm in sediment, and significantly decreased ferrous iron and SRP in the pore water compared to the control and worms treatments. Worms constructed no visually-oxidized galleries in the sediment in contrast to larvae, and they did not significantly alter SRP in the pore water relative to the control treatment. The adsorption of ferric iron oxyhydroxides to SRP caused by worms and larvae inhibited SRP release from sediment. Comparatively, worms inhibited more SRP release than larvae based on the same biomass, as they successively renewed the ferric iron oxyhydroxides rich oxidation layer through their deposition.


Assuntos
Sedimentos Geológicos , Invertebrados/metabolismo , Fosfatos/metabolismo , Água , Animais , Chironomidae/metabolismo , Monitoramento Ambiental , Helmintos/metabolismo , Larva/metabolismo
15.
Environ Geochem Health ; 30(5): 479-88, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18311589

RESUMO

This study focused on the sorption isotherms of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (p,p'-DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p'-DDE) on different original clays (i.e., zeolite, montmorillonite and attapulgite) and organoclay complexes. Sorption of organic pollutants was determined using gas chromatographic (GC) techniques to investigate the sorption behavior, and characterize the effect of, different organic cations. The original clays only sorbed low amounts of p,p'-DDT and p,p'-DDE, and the sorptive curves can be classified as L-shaped. Organoclays exhibited higher amounts of p,p'-DDT and p,p'-DDE sorption. The p,p'-DDT and p,p'-DDE sorption increased with increasing total organic carbon (OC) content of the organoclays. For hexadecyltrimethylammonium (HDTMA)-modified organoclays, the dominant adsorptive medium showed the partitioning sorption of hydrophobic-hydrophobic interaction, indicating no competitive sorption. The sorptive curves can be classified as C-shaped of constant partition (CP). However, benzyltrimethylammonium (BTMA)-modified organoclays exhibited competitive sorption. The sorption isotherm curves can be classified as S-shaped. The sorptive capacity of the HDTMA-modified organoclays for p,p'-DDT were higher than those for p,p'-DDE, but the BTMA-modified organoclays showed a reverse trend. This can be attributed to the different structures and shapes of organic cations, giving different sorptive mechanisms. The p,p'-DDT and p,p'-DDE sorption onto HDTMA-modified organoclays were caused by chemical interaction, with the BTMA modified organoclays occuring due to physical sorption.


Assuntos
Silicatos de Alumínio/química , DDT/química , Argila , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Environ Geochem Health ; 30(1): 67-77, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17610026

RESUMO

Laboratory incubation trials were conducted to investigate the effects of several factors on the persistence as well as the dissipation of three synthetic pyrethroid pesticides in red soils obtained from the Yangtze River Delta region in China. The pyrethroids selected for investigation were cypermethrin, fenvalerate, and deltamethrin, which continue to be used extensively to control pests on farmland in the region despite the concern that they are highly toxic to certain vertebrate and mammalian species. Data from this exploratory study showed that the dissipation half-lives (T (1/2)) tended to correlate with soil pH and soil organic matter contents, but not with soil cation-exchange capacity. The T (1/2) values were seen to be shorter in soil samples fertilized with glucose than without. The rates of pyrethroid dissipation also tended to increase with increasing initial soil concentration, but were largely unaffected by whether the pesticides were present in the soil separately or as a mixture. Another noteworthy observation is that microbial activity appeared to dominate the degradation process. Findings of this type could offer valuable clues for future research directions in reducing pesticide persistence in soil, which in turn could lead to the ultimate reduction of environmental pollution caused by pyrethroid application to farmland in the region.


Assuntos
Inseticidas/análise , Resíduos de Praguicidas/análise , Piretrinas/análise , Poluentes do Solo/análise , Solo/análise , China , Meia-Vida , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...