Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med Res ; 11(1): 31, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797843

RESUMO

Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration. However, these methods are somewhat limited, constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations. The advent of emerging spatiotemporal multi-omics approaches, encompassing transcriptomics, proteomics, metabolomics, and epigenomics, furnishes comprehensive insights into these intricate molecular dynamics. These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells, tissues, and organs, thereby offering an in-depth understanding of the fundamental mechanisms at play. This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research. It underscores how these methodologies augment our comprehension of molecular dynamics, cellular interactions, and signaling pathways. Initially, the review delineates the foundational principles underpinning these methods, followed by an evaluation of their recent applications within the field. The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field. Indubitably, spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration, thus charting a course toward potential therapeutic innovations.


Assuntos
Envelhecimento , Genômica , Proteômica , Medicina Regenerativa , Envelhecimento/fisiologia , Humanos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Genômica/métodos , Proteômica/métodos , Metabolômica/métodos , Epigenômica/métodos , Multiômica
2.
Arch Med Res ; 54(7): 102894, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806182

RESUMO

BACKGROUND: Numerous studies have confirmed that the leucine zipper tumor suppressor (LZTS) gene family plays a vital role in modulating transcription and cell cycle control, especially in colorectal cancer. This study aimed to evaluate the potential of leucine zipper tumor suppressor family member 3 (LZTS3) as a marker for COAD. METHODS: Bioinformatics, immunohistochemistry, and Western blotting were applied to assess the expression of LZTS3 in tissues. Gene overexpression or silencing was used to examine the biological roles of LZTS3 and validated using an in vivo nude mouse-human tumor model. RESULTS: The results obtained in this study indicate that LZTS3 is highly expressed in COAD. RTCA, Transwell, actin stain, and in vitro transfection experiments confirmed that LZTS3 expression inhibits tumor cell proliferation and cell migration. The results obtained in the nude mouse-human tumor model are consistent with those obtained in vitro. In particular, LZTS3 may exert biological effects by targeting the NOTCH signaling pathway. Furthermore, TAGLN was demonstrated to be a downstream target of LZTS3. CONCLUSION: This is the first study to demonstrate the important role of LZTS3 in the proliferation and migration of COAD and to shed light on the molecular mechanism underlying the tumor-suppressing role of LZTS3.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Animais , Humanos , Camundongos , Citoesqueleto de Actina/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteínas Supressoras de Tumor/genética
3.
Cannabis Cannabinoid Res ; 8(3): 445-463, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745405

RESUMO

Background: Despite the successful introduction of combined antiretroviral therapy, the prevalence of mild to moderate forms of HIV-associated neurocognitive disorders (HAND) remains high. It has been demonstrated that neuronal injury caused by HIV is excitotoxic and inflammatory, and it correlates with neurocognitive decline in HAND. Endocannabinoid system (ECS) protects the body from excitotoxicity and neuroinflammation on demand and presents a promising therapeutic target for treating HAND. Here, we firstly discuss the potential pathogenesis of HAND. We secondly discuss the structural and functional changes in the ECS that are currently known among HAND patients. We thirdly discuss current clinical and preclinical findings concerning the neuroprotective and anti-inflammatory properties of the ECS among HAND patients. Fourth, we will discuss the interactions between the ECS and neuroendocrine systems, including the hypothalamic-pituitary-adrenocortical (HPA) and hypothalamic-pituitary-gonadal (HPG) axes under the HAND conditions. Materials and Methods: We have carried out a review of the literature using PubMed to summarize the current state of knowledge on the association between ECS and HAND. Results: The ECS may be ideally suited for modulation of HAND pathophysiology. Direct activation of presynaptic cannabinoid receptor 1 or reduction of cannabinoid metabolism attenuates HAND excitotoxicity. Chronic neuroinflammation associated with HAND can be reduced by activating cannabinoid receptor 2 on immune cells. The sensitivity of the ECS to HIV may be enhanced by increased cannabinoid receptor expression in HAND. In addition, indirect regulation of the ECS through modulation of hormone-related receptors may be a potential strategy to influence the ECS and also alleviate the progression of HAND due to the reciprocal inhibition of the ECS by the HPA and HPG axes. Conclusions: Taken together, targeting the ECS may be a promising strategy to alleviate the inflammation and neurodegeneration caused by HIV-1 infection. Further studies are required to clarify the role of endocannabinoid signaling in HIV neurotoxicity. Strategies promoting endocannabinoid signaling may slow down cognitive decline of HAND are proposed.


Assuntos
Canabinoides , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Endocanabinoides/metabolismo , HIV-1/metabolismo , Doenças Neuroinflamatórias , Receptores de Canabinoides/metabolismo , Transtornos Neurocognitivos/tratamento farmacológico , Infecções por HIV/tratamento farmacológico
4.
Neurochem Res ; 48(6): 1945-1957, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36763313

RESUMO

The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain. Our results indicated that CCI increased the numbers of SCs displaying H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) and H3K27me3 in the sciatic nerve. ChIP-seq data showed that CCI significantly changed H3K27me3 enrichments on gene promoters in the sciatic nerve. Bioinformatics analyses exhibited that genes gaining H3K27me3 were mostly associated with regulation of cell proliferation, response to stress and oxidation-reduction process. Genes losing this mark were enriched in neuronal generation, and MAPK, cAMP as well as ERBB signaling pathways. Importantly, IL1A, CCL2, NOS2, S100A8, BDNF, GDNF, ERBB3 and C3 were identified as key genes in neuropathic pain. CCI led to significant upregulation of key genes in the sciatic nerve. EZH2 inhibitor reversed CCI-induced increases of H3K27me3 and key gene protein levels, which were accompanied by relieved mechanical allodynia and thermal hyperalgesia in CCI rats. These results indicate that genes with differential enrichments of H3K27me3 in SCs function in various cellular processes and pathways, and many are linked to neuropathic pain after peripheral nerve injury.


Assuntos
Neuralgia , Neuropatia Ciática , Animais , Ratos , Constrição , Histonas/metabolismo , Hiperalgesia/metabolismo , Lisina/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Nervo Isquiático/metabolismo , Neuropatia Ciática/genética , Neuropatia Ciática/metabolismo , Estudo de Associação Genômica Ampla
5.
Front Genet ; 13: 894024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664334

RESUMO

Non-small-cell lung cancer (NSCLC) is one of the most common malignancies, and specific molecular targets are still lacking. Angiogenesis plays a central regulatory role in the growth and metastasis of malignant tumors and angiogenic factors (AFs) are involved. Although there are many studies comparing AFs and cancer, a prognostic risk model for AFs and cancer in humans has not been reported in the literature. This study aimed to identify the key AFs closely related to the process of NSCLC development, and four genes have been found, C1QTNF6, SLC2A1, PTX3, and FSTL3. Then, we constructed a novel prognostic risk model based on these four genes in non-small-cell lung cancer (NSCLC) and fully analyzed the relationship with clinical features, immune infiltration, genomes, and predictors. This model had good discrimination and calibration and will perform well in predicting the prognosis of treatment in clinical practice.

6.
Comput Struct Biotechnol J ; 20: 1198-1207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317226

RESUMO

The activation of mast cells (MCs) and mediator release are closely related to the pathophysiology of irritable bowel syndrome (IBS). However, the exact underlying mechanisms are still not completely understood. The nuclear receptor subfamily 4a (Nr4a) is a family of orphan nuclear receptors implicated in regulating MC activation, degranulation, cytokine/chemokine synthesis and release. Acute and chronic stress trigger hypothalamic-pituitaryadrenal axis (HPA) activation to induce the release of corticotropin-releasing hormone (CRH), resulting in MC activation and induction of the Nr4a family. Our newest data showed that Nr4a members were specially over-expressed in colonic MCs of the chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice, suggesting that Nr4a members might be involved in the pathophysiology of visceral hypersensitivity. In this review, we highlight the present knowledge on roles of Nr4a members in the activation of MCs and the pathophysiology of IBS, and discuss signaling pathways that modulate the activation of Nr4a family members. We propose that a better understanding of Nr4a members and their modulators may facilitate the development of more selective and effective therapies to treat IBS patients.

7.
CNS Neurosci Ther ; 27(11): 1409-1424, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34397151

RESUMO

AIMS: Calcitonin gene-related peptide (CGRP) as a regulator of astrocyte activation may facilitate spinal nociceptive processing. Histone H3 lysine 9 acetylation (H3K9ac) is considered an important regulator of cytokine and chemokine gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K9ac in the activation of astrocytes, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. METHODS: Astroglial cells (C6) were treated with CGRP and differentially enrichments of H3K9ac on gene promoters were examined using ChIP-seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on astrocyte activation and H3K9ac signaling in CCI-induced neuropathic pain. Specific inhibitors were employed to delineate the involved signaling. RESULTS: Intrathecal injection of CGRP and CCI increased the number of astrocytes displaying H3K9ac in the spinal dorsal horn of rats. Treatment of CGRP was able to up-regulate H3K9ac and glial fibrillary acidic protein (GFAP) expression in astroglial cells. ChIP-seq data indicated that CGRP significantly altered H3K9ac enrichments on gene promoters in astroglial cells following CGRP treatment, including 151 gaining H3K9ac and 111 losing this mark, which mostly enriched in proliferation, autophagy, and macrophage chemotaxis processes. qRT-PCR verified expressions of representative candidate genes (ATG12, ATG4C, CX3CR1, MMP28, MTMR14, HMOX1, RET) and RTCA verified astrocyte proliferation. Additionally, CGRP treatment increased the expression of H3K9ac, CX3CR1, and IL-1ß in the spinal dorsal horn. CGRP antagonist and HAT inhibitor attenuated mechanical and thermal hyperalgesia in CCI rats. Such analgesic effects were concurrently associated with the reduced levels of H3K9ac, CX3CR1, and IL-1ß in the spinal dorsal horn of CCI rats. CONCLUSION: Our findings highly indicate that CGRP is associated with the development of neuropathic pain through astrocytes-mediated neuroinflammatory responses via H3K9ac in spinal dorsa horn following nerve injury. This study found that CGRP act on their astrocytic receptors and lead to H3K9 acetylation (H3K9ac), which are mainly associated with proliferation-, autophagy-, and inflammation-related gene expression. The number of astrocytes with H3K9ac expression is increased after nerve injury. Inhibition of CGRP attenuates the development of neuropathic pain, which was accompanied by the suppression of H3K9ac, CX3CR1, and IL-1ß expression in CCI rats.


Assuntos
Astrócitos/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Histonas/metabolismo , Lisina/metabolismo , Neuralgia/metabolismo , Neuralgia/patologia , Doenças Neuroinflamatórias/patologia , Acetilação , Animais , Astrócitos/efeitos dos fármacos , Autofagia , Proliferação de Células , Proteína Glial Fibrilar Ácida/metabolismo , Injeções Espinhais , Masculino , Ratos , Ratos Wistar
8.
Semin Liver Dis ; 41(4): 495-506, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34261137

RESUMO

The human gut harbors a dense and highly diverse microbiota of approximately 1,000 bacterial species. The interaction between the host and gut bacteria strongly influences human health. Numerous evidence suggest that intestinal flora imbalance is closely associated with the development and treatment of liver diseases, including acute liver injury and chronic liver diseases (cirrhosis, autoimmune liver disease, and fatty liver). Therefore, regulating the gut microbiota is expected to be a new method for the adjuvant treatment of liver diseases. Fecal microbiota transplantation (FMT) is defined as the transplantation of gut microbiota from healthy donors to sick patients via the upper or lower gastrointestinal route to restore the normal intestinal balance. In this study, we briefly review the current research on the gut microbiota and its link to liver diseases and then summarize the evidence to elucidate the clinical application and development of FMT in liver disease treatment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Transplante de Microbiota Fecal , Fezes , Humanos , Cirrose Hepática
9.
J Neuroinflammation ; 18(1): 117, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020664

RESUMO

BACKGROUND: Calcitonin gene-related peptide (CGRP) as a mediator of microglial activation at the transcriptional level may facilitate nociceptive signaling. Trimethylation of H3 lysine 27 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that regulates inflammatory-related gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K27me3 in microglial activation after nerve injury, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. METHODS: Microglial cells (BV2) were treated with CGRP and differentially enrichments of H3K27me3 on gene promoters were examined using ChIP-seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on microglial activation and EZH2/H3K27me3 signaling in CCI-induced neuropathic pain. RESULTS: Overexpressions of EZH2 and H3K27me3 were confirmed in spinal microglia of CCI rats by immunofluorescence. CGRP treatment induced the increased of H3K27me3 expression in the spinal dorsal horn and cultured microglial cells (BV2) through EZH2. ChIP-seq data indicated that CGRP significantly altered H3K27me3 enrichments on gene promoters in microglia following CGRP treatment, including 173 gaining H3K27me3 and 75 losing this mark, which mostly enriched in regulation of cell growth, phagosome, and inflammation. qRT-PCR verified expressions of representative candidate genes (TRAF3IP2, BCL2L11, ITGAM, DAB2, NLRP12, WNT3, ADAM10) and real-time cell analysis (RTCA) verified microglial proliferation. Additionally, CGRP treatment and CCI increased expressions of ITGAM, ADAM10, MCP-1, and CX3CR1, key mediators of microglial activation in spinal dorsal horn and cultured microglial cells. Such increased effects induced by CCI were suppressed by CGRP antagonist and EZH2 inhibitor, which were concurrently associated with the attenuated mechanical and thermal hyperalgesia in CCI rats. CONCLUSION: Our findings highly indicate that CGRP is implicated in the genesis of neuropathic pain through regulating microglial activation via EZH2-mediated H3K27me3 in the spinal dorsal horn.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Neuralgia/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Expressão Gênica , Indóis/antagonistas & inibidores , Inflamação/metabolismo , Masculino , Metilação , Microglia/patologia , Nociceptores/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Piridonas/antagonistas & inibidores , Ratos , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...