Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(22)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429032

RESUMO

BACKGROUND: Arecoline is known as the main active carcinogen found in areca nut extract that drives the pathological progression of oral squamous cell carcinoma (OSCC). Studies have revealed that dysregulation of RNA N6-methyladenosine (m6A) methyltransferase components is intimately linked to cancer initiation and progression, including oral cancer. METHODS: The arecoline-induced dysregulated methyltransferase-like 3 (METTL3) gene was identified using RNA-seq transcriptome assay. Using in vitro and in vivo models, the biological roles of METTL3 in arecoline-transformed oral cancer were examined. RESULTS: We found that METTL3 was markedly elevated in arecoline-exposed OSCC cell lines and OSCC tissues of areca nut chewers. We identified that hypoxia-inducible factor 1-alpha (HIF-1α) stimulated METTL3 expression at the transcriptional level and further proved that METTL3-MYC-HIF-1α formed a positive autoregulation loop in arecoline-transformed OSCC cells. Subsequently, we manifested that METTL3 depletion profoundly reduced cell proliferation, cell migration, oncogenicity, and cisplatin resistance of arecoline-exposed OSCC cells. CONCLUSIONS: Developing novel strategies to target METTL3 may be a potential way to treat OSCC patients, particularly those with areca nut chewing history and receiving cisplatin treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Arecolina/farmacologia , Metiltransferases/genética , Metiltransferases/metabolismo , Cisplatino/farmacologia , RNA , Carcinoma de Células Escamosas/patologia , Carcinogênese/genética , Adenosina/farmacologia , Adenosina/metabolismo , Transformação Celular Neoplásica
2.
Oral Dis ; 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076350

RESUMO

OBJECTIVE: Periodontitis is characterized by alveolar bone injury and absorption, with high incidence and poor treatment effect. Proliferation, migration, differentiation and apoptosis of osteoblasts are identified as key factors during the regeneration of alveolar bone tissue processes. Periodontal ligament stem cells (PDLSCs) have been proved to be a possible candidate for the treatment of periodontitis due to its multiple advantages, such as increasing the regenerative capacity of bone tissue. However, the effect of exosomes derived from PDLSCs (PDLSC-Exo) on osteoblasts remains to be further studied. METHODS AND MATERIALS: In this work, cell proliferation, migration, osteogenic differentiation, and H2 O2 -induced apoptosis were detected after cells were exposed to PDLSC-Exo by CCK-8, scratch wound assay, alizarin red S and alkaline phosphatase staining, real-time PCR, flow cytometry, tunel assay, and so on. Moreover, the activation of PI3K/AKT and MEK/ERK signaling pathways was evaluated by western blotting. RESULTS: We found that PDLSC-Exo are capable of promoting hFOB1.19 cell proliferation, migration and osteogenic differentiation, inhibiting H2 O2 -induced apoptosis, and activating the PI3K/AKT and MEK/ERK signaling pathways. CONCLUSION: These results suggest that PDLSC-Exo may be a promising therapeutic for osteoblastic damage.

3.
J Oral Pathol Med ; 51(5): 474-482, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35377493

RESUMO

BACKGROUND: Oral submucosal fibrosis (OSF) is a precancerous condition that closely related to the habit of chewing betel nut. The OSF patients of 3%-19% may develop cancer, and this probability is increasing year by year. Epigenetics modifications have been reported as part of the pathogenesis of OSF. However, in OSF field, the role and mechanism of arecoline-induced activation of transforming growth factor ß (TGF-ß) signaling on N6-methyladenosine (m6A) modification remain unclear. In this study, we investigated the effect and mechanism of arecoline on m6A modification. METHODS: MeRIP-Seq and RNA-seq were performed in arecoline-stimulated cells. Quantitative polymerase chain reaction and western blot were performed to detect the expression of m6A writers and erasers. CCK-8 and flow cytometry analyses were performed to measure the cell viability and apoptosis. RESULTS: m6A level was increased in OSF tissues compared to normal tissues; arecoline promoted the m6A methyltransferase Mettl3 and Mettl14 through TGF-ß. MeRIP-seq and RNA-seq analyses found that MYC was the target gene of Mettl14. In addition, Mettl14 silence reversed the effects of arecoline on cell proliferation and apoptosis in Hacat cells. CONCLUSION: TGF-ß-METTL14-m6A-MYC axis was crucially implicated in arecoline-mediated OSF and may be an effective therapeutic strategy for OSF treatment.


Assuntos
Arecolina , Fibrose Oral Submucosa , Adenosina/análogos & derivados , Adenosina/metabolismo , Arecolina/farmacologia , Humanos , Metiltransferases/genética , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/genética , Fator de Crescimento Transformador beta
4.
Cancer Sci ; 113(9): 2962-2973, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35289035

RESUMO

The high prevalence of oral squamous cell carcinoma (OSCC) in South Asia is associated with habitual areca nut chewing. Arecoline, a primary active carcinogen within areca nut extract, is known to promote OSCC pathological development. Dysregulation of N6-methyladenosine (m6A) modification has begun to emerge as a significant contributor to cancer development and progression. However, the biological effects and molecular mechanisms of m6A modification in arecoline-promoted OSCC malignance remain elusive. We reveal that chronic arecoline exposure substantially induces upregulation of fat mass and obesity-associated protein (FTO), MYC, and programmed cell death-ligand 1 (PD-L1) in OSCC cells. Moreover, upregulation of PD-L1 is observed in OSCC cell lines and tissues and is associated with areca nut chewing in OSCC patients. We also demonstrate that arecoline-induced FTO promotes the stability and expression levels of PD-L1 transcripts through mediating m6A modification and MYC activity, respectively. PD-L1 upregulation confers superior cell proliferation, migration, and resistance to T-cell killing to OSCC cells. Blockage of PD-L1 by administration of anti-PD-L1 antibody shrinks tumor size and improves mouse survival by elevating T-cell-mediated tumor cell killing. Therefore, targeting PD-L1 might be a potential therapeutic strategy for treating PD-L1-positive OSCC patients, especially those with habitual areca nut chewing.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Apoptose , Areca/efeitos adversos , Areca/metabolismo , Arecolina/farmacologia , Carcinoma de Células Escamosas/patologia , Imunidade , Ligantes , Camundongos , Neoplasias Bucais/patologia , Obesidade/complicações , Carcinoma de Células Escamosas de Cabeça e Pescoço
5.
Cancer Med ; 10(18): 6402-6415, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378866

RESUMO

Arecoline, a major alkaloid within areca nut extract, is recognized as the primary active carcinogen promoting oral squamous cell carcinoma (OSCC) pathological development. Dysregulation of N6-methyladenosine (m6A) methyltransferase components (e.g., Fat mass and obesity-associated protein [FTO] and methyltransferase-like 3 [METTL3]) are closely associated with multiple cancer progression, including oral cancer. However, the biological function role of FTO in arecoline-induced oral cancer is largely unknown. We identified that FTO was significantly upregulated in OSCC tissues from patients with areca nut chewing habits and chronic arecoline-treated OSCC cell lines. Depletion of FTO attenuated the arecoline-promoted stemness, chemoresistance, and oncogenicity of OSCC cells. Finally, we revealed that FTO was negatively regulated by a transcription factor forkhead box protein A2 (FOXA2) in OSCC cells. This study, for the first time, demonstrated that FTO plays an oncogenic role in arecoline-induced OSCC progression. Thus, developing new therapeutic agents targeting FTO may serve as a promising method to treatment OSCC patients, especially those with areca nut chewing habits.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Arecolina/efeitos adversos , Fator 3-beta Nuclear de Hepatócito/metabolismo , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Areca/efeitos adversos , Areca/química , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Metiltransferases/metabolismo , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/patologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Nozes/efeitos adversos , Nozes/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Regulação para Cima
6.
Exp Cell Res ; 351(1): 100-108, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077301

RESUMO

Cancer associated fibroblasts (CAFs) are known to be involved in initiation, progression and metastasis of various cancers. However, the molecular mechanism of how CAFs affects the biological function of oral cancer (OC) has not been fully-addressed. In this study, we demonstrated that miR-124 was downregulated in oral CAFs and oral cancer cells (OCCs) when compared with matched normal fibroblasts (NFs). Hypermethylation in the promoter region of miR-124 genes was accounted for its downregulation. Interestingly, CAFs but not NFs exerted promotion effect on OCCs cell proliferation, migration and tumor growth in CAFs/NFs-OCCs co-culture. Furthermore, we identified Chemokine (C-C motif) ligand 2 (CCL2) and Interleukin 8 (IL-8) as two direct targets of miR-124. Over-expression of miR-124 in CAFs-OCCs co-culture abrogated CAFs-promoted OCCs cell growth and migration, and this inhibitory effect can be rescued by addition of CCL2 and IL-8. Finally, we showed that restoration of miR-124 expression by lentiviral infection or formulated miR-124 injection inhibited oral tumor growth in vivo suggesting miR-124 rescue could be a potential rationale for therapeutic applications in oral cancer in the future.


Assuntos
Carcinoma/genética , Regulação para Baixo , MicroRNAs/genética , Neoplasias Bucais/genética , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...