Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981451

RESUMO

Due to shortcomings such as poor homogeneity of Al doping, precisely controlling the thickness, inability to conformally deposit on high aspect ratio devices and high pinhole rate, the applications of Al-doped ZnO (AZO) nanomembrane in integrated optoelectronic devices are remarkably influenced. Here, we report in situ monitoring during the atomic layer deposition (ALD) of AZO nanomembrane by using an integrated spectroscopic ellipsometer. AZO nanomembranes with different compositions were deposited with real-time and precise atomic level monitoring of the deposition process. We specifically investigate the half reaction and thickness evolution during the ALD processes and the influence of the chamber temperature is also disclosed. Structural characterizations demonstrate that the obtained AZO nanomembranes without any post-treatment are uniform, dense and pinhole-free. The transmittances of the nanomembranes in visible range are > 94%, and the optimal conductivity can reach up to 1210 S/cm. The output of current research may pave the way for AZO nanomembrane becoming promising in integrated optoelectronic devices.

2.
Small ; 20(14): e2308788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988647

RESUMO

Heteroatom-doped porous carbon materials have investigated to promote the energy density of zinc-ion hybrid capacitors (ZICs). Yet, the quest for high-performance carbon materials or cathodes brings to light the question of which dopants facilitate fast energy storage kinetics and various types of pseudocapacitive reactions. Investigation of carbon materials with precise quantitative dopants as the key variable represents an effective appropriate approach to comprehending the intricate role of dopants in energy storage areas. Here, a straightforward solvothermal strategy is demonstrated for a variety of pristine and iron-incorporated polymer microspheres, used as precursors for durable spherical carbons intended for cathode applications in ZICs. The strategy effectively governs the incorporation of dopants within the carbon materials, whilewhile maintaining consistent morphology, microtexture, and pore structure across different carbon variations. The synergistic effect of various dopants enhance the pseudocapacitance and facilitate the ion storage process. In consequence, the optimal cathode delivers considerable capacity (178.8 mAh g-1 at 0.5 A g-1), good energy density (120.2 Wh kg-1 at 336 W kg-1), and excellent cycling stability (101.5% capacity retention at 35 000 cycles). The demonstration showcases a viable method for crafting carbon materials with precise dopants to accommodate the zinc anode, thus enabling high-capacity and high-energy ZICs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...