Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499736

RESUMO

Cardiorenal syndrome (CRS) denotes the bidirectional interaction of chronic kidney disease and heart failure with an adverse prognosis but with a limited understanding of its pathogenesis. This study correlates biochemical blood markers, histopathological and immunohistochemistry features, and 2-deoxy-2-fluoro-D-glucose positron emission tomography (18F-FDG PET) metabolic data in low-dose doxorubicin-induced heart failure, cardiorenal syndrome, and renocardiac syndrome induced on Wistar male rats. To our knowledge, this is the first study that investigates the underlying mechanisms for CRS progression in rats using 18F-FDG PET. Clinical, metabolic cage monitoring, biochemistry, histopathology, and immunohistochemistry combined with PET/MRI (magnetic resonance imaging) data acquisition at distinct points in the disease progression were employed for this study in order to elucidate the available evidence of organ crosstalk between the heart and kidneys. In our CRS model, we found that chronic treatment with low-dose doxorubicin followed by acute 5/6 nephrectomy incurred the highest mortality among the study groups, while the model for renocardiac syndrome resulted in moderate-to-high mortality. 18F-FDG PET imaging evidenced the doxorubicin cardiotoxicity with vascular alterations, normal kidney development damage, and impaired function. Given the fact that standard clinical markers were insensitive to early renal injury, we believe that the decreasing values of the 18F-FDG PET-derived renal marker across the groups and, compared with their age-matched controls, along with the uniform distribution seen in healthy developing rats, could have a potential diagnostic and prognostic yield in cardiorenal syndrome.


Assuntos
Síndrome Cardiorrenal , Insuficiência Cardíaca , Animais , Masculino , Ratos , Síndrome Cardiorrenal/diagnóstico por imagem , Ratos Wistar , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Doxorrubicina
2.
Ann Nucl Med ; 35(9): 967-993, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34275068

RESUMO

Cardiac amyloidosis is a protein deposition disease characterized by the infiltration of the myocardium and coronary arteries resulting in a progressive thickening of both ventricles, interatrial septum and atrioventricular valves, eventually leading to organ failure. It is a disease hard to diagnose, due to the lack of diagnostic investigations. However, development of new and more accurate examinations is undergoing. Endomyocardial biopsy is the gold standard investigation for this disease, but it has its limitations (invasive and not widely available). Other investigations may be able to detect the presence of cardiac amyloidosis but cannot specify the type involved. To that end, nuclear medicine through bone scanning offers a simple, non-invasive solution to detect, differentiate and diagnose transthyretin cardiac amyloidosis (ATTR) from other types of cardiac amyloidosis. In order to demonstrate the importance of bone scanning we will present a few methods of image processing based on literature and a personalized method, followed by a few important examples of positive cases. The aim of this review was to present the current methods of ATTR detection with emphasis on nuclear medicine bone scanning and its important place in the decision algorithm of the cardiologist for a personalized approach to this pathology.


Assuntos
Pré-Albumina , Amiloidose , Cardiomiopatias , Humanos , Cintilografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...