Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 640450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777913

RESUMO

Pseudomonas aeruginosa is a human opportunistic pathogen responsible for nosocomial infections, which is largely used as a model organism to study antibiotic resistance and pathogenesis. As other species of the genus, its wide metabolic versatility appears to be attractive to study biotechnological applications. However, its natural resistance to antibiotics and its capacity to produce a wide range of virulence factors argue against its biotechnological potential. By reducing the genome of the reference strain PAO1, we explored the development of four hypovirulent and hypersusceptible recombinant DNA hosts (rDNA hosts). Despite deleting up to 0.8% of the core genome, any of the developed strains presented alterations of fitness when cultured under standard laboratory conditions. Other features such as antibiotic susceptibility, cytotoxicity, in vivo pathogenesis, and expression of heterologous peptides were also explored to highlight the potential applications of these models. This work stands as the first stage of the development of a safe-platform strain of Pseudomonas aeruginosa that will be further optimized for biotechnological applications.

2.
Antimicrob Agents Chemother ; 58(1): 221-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24145539

RESUMO

Constitutive overproduction of the pump MexXY-OprM is recognized as a major cause of resistance to aminoglycosides, fluoroquinolones, and zwitterionic cephalosporins in Pseudomonas aeruginosa. In this study, 57 clonally unrelated strains recovered from non-cystic fibrosis patients were analyzed to characterize the mutations resulting in upregulation of the mexXY operon. Forty-four (77.2%) of the strains, classified as agrZ mutants were found to harbor mutations inactivating the local repressor gene (mexZ) of the mexXY operon (n = 33; 57.9%) or introducing amino acid substitutions in its product, MexZ (n = 11; 19.3%). These sequence variations, which mapped in the dimerization domain, the DNA binding domain, or the rest of the MexZ structure, mostly affected amino acid positions conserved in TetR-like regulators. The 13 remaining MexXY-OprM strains (22.8%) contained intact mexZ genes encoding wild-type MexZ proteins. Eight (14.0%) of these isolates, classified as agrW1 mutants, overexpressed the gene PA5471, which codes for the MexZ antirepressor ArmZ [corrected], with 5 strains exhibiting growth defects at 37°C and 44°C, consistent with mutations impairing ribosome activity. Interestingly, one agrW1 mutant appeared to harbor a 7-bp deletion in the coding sequence of the leader peptide, PA5471.1, involved in ribosome-dependent, translational attenuation of PA5471 expression. Finally, DNA sequencing and complementation experiments revealed that 5 (8.8%) strains, classified as agrW2 mutants, harbored single amino acid variations in the sensor histidine kinase of ParRS, a two-component system known to positively control mexXY expression. Collectively, these results demonstrate that clinical strains of P. aeruginosa exploit different regulatory circuitries to mutationally overproduce the MexXY-OprM pump and become multidrug resistant, which accounts for the high prevalence of MexXY-OprM mutants in the clinical setting.


Assuntos
Aminoglicosídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Mutação , Óperon/genética , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...