Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22987, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151495

RESUMO

Managing the worldwide steady increase in the production of plastic while mitigating the Earth's global pollution is one of the greatest challenges nowadays. Fungi are often involved in biodegradation processes thanks to their ability to penetrate into substrates and release powerful catabolic exoenzymes. However, studying the interaction between fungi and plastic substrates is challenging due to the deep hyphal penetration, which hinders visualisation and evaluation of fungal activity. In this study, a multiscale and multimodal correlative microscopy workflow was employed to investigate the infiltrative and degradative ability of Fusarium oxysporum fungal strain on polyethylene terephthalate (PET) fragments. The use of non-destructive high-resolution 3D X-ray microscopy (XRM) coupled with a state-of-art Deep Learning (DL) reconstruction algorithm allowed optimal visualisation of the distribution of the fungus on the PET fragment. The fungus preferentially developed on the edges and corners of the fragment, where it was able to penetrate into the material through fractures. Additional analyses with scanning electron microscopy (SEM), Raman and energy dispersive X-ray spectroscopy (EDX) allowed the identification of the different phases detected by XRM. The correlative microscopy approach unlocked a more comprehensive understanding of the fungus-plastic interaction, including elemental information and polymeric composition.


Assuntos
Aprendizado Profundo , Fusarium , Polietilenotereftalatos , Fungos/metabolismo , Fusarium/metabolismo , Microscopia Eletrônica de Varredura
2.
Sci Rep ; 10(1): 20608, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244005

RESUMO

Muong Nong-type (MN) tektites are a layered type of tektite associated to the Australasian strewn field, the youngest (790 kyr) and largest on Earth. In some MN tektites, coesite is observed in association with relict quartz and silica glass within inclusions surrounded by a froth layer. The formation of coesite-bearing frothy inclusions is here investigated through a 3D textural multiscale analysis of the vesicles contained in a MN tektite sample, combined with compositional and spectroscopic data. The vesicle size distribution testifies to a post-shock decompression that induced melting and extensive vesiculation in the tektite melt. Compared to free vesicles, nucleated homogeneously in the tektite melt, froth vesicles nucleated heterogeneously on relict quartz surfaces at the margins of coesite-bearing inclusions. The rapid detachment of the froth vesicles and prompt reactivation of the nucleation site favoured the packing of vesicles and the formation of the froth structure. Vesicle relaxation time scales suggest that the vesiculation process lasted few seconds. The formation of the froth layer was instrumental for the preservation of coesite, promoting quenching of the inclusion core through the subtraction of heat during froth expansion, thereby physically insulating the inclusion until the final quench of the tektite melt.

3.
J Appl Crystallogr ; 52(Pt 3): 643-651, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31236094

RESUMO

A method for reconstructing the three-dimensional grain structure from data collected with a recently introduced laboratory-based X-ray diffraction contrast tomography system is presented. Diffraction contrast patterns are recorded in Laue-focusing geometry. The diffraction geometry exposes shape information within recorded diffraction spots. In order to yield the three-dimensional crystallographic microstructure, diffraction spots are extracted and fed into a reconstruction scheme. The scheme successively traverses and refines solution space until a reasonable reconstruction is reached. This unique reconstruction approach produces results efficiently and fast for well suited samples.

4.
Materials (Basel) ; 11(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340349

RESUMO

In this paper, we present a comprehensive 4D study of the early stage of plastic deformation in a polycrystalline binary AlLi alloy. The entire microstructure is mapped with X-ray diffraction contrast tomography, and a set of bulk grains is further studied via X-ray topotomography during mechanical loading. The observed contrast is analyzed with respect to the slip system activation, and the evolution of the orientation spread is measured as a function of applied strain. The experimental observations are augmented by the mechanical response predicted by crystal plasticity finite element simulations to analyze the onset of plasticity in detail. Simulation results show a general agreement of the individual slip system activation during loading and that comparison with experiments at the length scale of the grains may be used to fine tune the constitutive model parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...