Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9288, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35660762

RESUMO

Post-transcriptional regulatory mechanisms play a role in many biological contexts through the control of mRNA degradation, translation and localization. Here, we show that the RING finger protein RNF219 co-purifies with the CCR4-NOT complex, the major mRNA deadenylase in eukaryotes, which mediates translational repression in both a deadenylase activity-dependent and -independent manner. Strikingly, RNF219 both inhibits the deadenylase activity of CCR4-NOT and enhances its capacity to repress translation of a target mRNA. We propose that the interaction of RNF219 with the CCR4-NOT complex directs the translational repressive activity of CCR4-NOT to a deadenylation-independent mechanism.


Assuntos
Biossíntese de Proteínas , Ribonucleases , Regulação da Expressão Gênica , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
2.
Cell Rep Methods ; 1(1): 100009, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35474693

RESUMO

Current super-resolution microscopy (SRM) methods suffer from an intrinsic complexity that might curtail their routine use in cell biology. We describe here random illumination microscopy (RIM) for live-cell imaging at super-resolutions matching that of 3D structured illumination microscopy, in a robust fashion. Based on speckled illumination and statistical image reconstruction, easy to implement and user-friendly, RIM is unaffected by optical aberrations on the excitation side, linear to brightness, and compatible with multicolor live-cell imaging over extended periods of time. We illustrate the potential of RIM on diverse biological applications, from the mobility of proliferating cell nuclear antigen (PCNA) in U2OS cells and kinetochore dynamics in mitotic S. pombe cells to the 3D motion of myosin minifilaments deep inside Drosophila tissues. RIM's inherent simplicity and extended biological applicability, particularly for imaging at increased depths, could help make SRM accessible to biology laboratories.


Assuntos
Processamento de Imagem Assistida por Computador , Iluminação , Animais , Microscopia de Fluorescência/métodos , Drosophila
3.
Nucleus ; 8(6): 589-599, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099269

RESUMO

Translocations are dramatic genomic rearrangements due to aberrant rejoining of distant DNA ends that can trigger cancer onset and progression. Translocations frequently occur in genes, yet the mechanisms underlying their formation remain poorly understood. One potential mechanism involves DNA Double Strand Break mobility and juxtaposition (i.e. clustering), an event that has been intensively debated over the past decade. Using Capture Hi-C, we recently found that DSBs do in fact cluster in human nuclei but only when induced in transcriptionally active genes. Notably, we found that clustering of damaged genes is regulated by cell cycle progression and coincides with damage persistency. Here, we discuss the mechanisms that could sustain clustering and speculate on the functional consequences of this seemingly double edge sword mechanism that may well stand at the heart of translocation biogenesis.


Assuntos
Quebras de DNA de Cadeia Dupla , Animais , Núcleo Celular/metabolismo , Reparo do DNA/genética , Fase G1/genética , Humanos , Modelos Biológicos
4.
Mol Cell ; 57(2): 273-89, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25533186

RESUMO

Mec1-Ddc2 (ATR-ATRIP) controls the DNA damage checkpoint and shows differential cell-cycle regulation in yeast. To find regulators of Mec1-Ddc2, we exploited a mec1 mutant that retains catalytic activity in G2 and recruitment to stalled replication forks, but which is compromised for the intra-S phase checkpoint. Two screens, one for spontaneous survivors and an E-MAP screen for synthetic growth effects, identified loss of PP4 phosphatase, pph3Δ and psy2Δ, as the strongest suppressors of mec1-100 lethality on HU. Restored Rad53 phosphorylation accounts for part, but not all, of the pph3Δ-mediated survival. Phosphoproteomic analysis confirmed that 94% of the mec1-100-compromised targets on HU are PP4 regulated, including a phosphoacceptor site within Mec1 itself, mutation of which confers damage sensitivity. Physical interaction between Pph3 and Mec1, mediated by cofactors Psy2 and Ddc2, is shown biochemically and through FRET in subnuclear repair foci. This establishes a physical and functional Mec1-PP4 unit for regulating the checkpoint response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Pontos de Checagem do Ciclo Celular , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA , Epistasia Genética , Regulação Fúngica da Expressão Gênica , Células HEK293 , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/citologia , Transdução de Sinais
5.
Mol Cell ; 49(2): 346-58, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23273983

RESUMO

To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell's genetic network across a panel of different DNA-damaging agents, resulting in ~1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways.


Assuntos
Dano ao DNA , Epistasia Genética , Saccharomyces cerevisiae/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Genoma Fúngico , Instabilidade Genômica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
EMBO J ; 31(18): 3768-83, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22820947

RESUMO

DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Sítios de Ligação , Quinase do Ponto de Checagem 2 , DNA Polimerase I/metabolismo , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/metabolismo , Humanos , Modelos Genéticos , Mutação , Fosforilação , Estrutura Terciária de Proteína
7.
BMC Syst Biol ; 5: 80, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21605386

RESUMO

BACKGROUND: Epistatic Miniarray Profiling(E-MAP) quantifies the net effect on growth rate of disrupting pairs of genes, often producing phenotypes that may be more (negative epistasis) or less (positive epistasis) severe than the phenotype predicted based on single gene disruptions. Epistatic interactions are important for understanding cell biology because they define relationships between individual genes, and between sets of genes involved in biochemical pathways and protein complexes. Each E-MAP screen quantifies the interactions between a logically selected subset of genes (e.g. genes whose products share a common function). Interactions that occur between genes involved in different cellular processes are not as frequently measured, yet these interactions are important for providing an overview of cellular organization. RESULTS: We introduce a method for combining overlapping E-MAP screens and inferring new interactions between them. We use this method to infer with high confidence 2,240 new strongly epistatic interactions and 34,469 weakly epistatic or neutral interactions. We show that accuracy of the predicted interactions approaches that of replicate experiments and that, like measured interactions, they are enriched for features such as shared biochemical pathways and knockout phenotypes. We constructed an expanded epistasis map for yeast cell protein complexes and show that our new interactions increase the evidence for previously proposed inter-complex connections, and predict many new links. We validated a number of these in the laboratory, including new interactions linking the SWR-C chromatin modifying complex and the nuclear transport apparatus. CONCLUSION: Overall, our data support a modular model of yeast cell protein network organization and show how prediction methods can considerably extend the information that can be extracted from overlapping E-MAP screens.


Assuntos
Biologia Computacional/métodos , Epistasia Genética , Mapeamento de Interação de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
J Cell Biol ; 192(5): 735-50, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21357745

RESUMO

Rad54, a member of the SWI/SNF protein family of DNA-dependent ATPases, repairs DNA double-strand breaks (DSBs) through homologous recombination. Here we demonstrate that Rad54 is required for the timely accumulation of the homologous recombination proteins Rad51 and Brca2 at DSBs. Because replication protein A and Nbs1 accumulation is not affected by Rad54 depletion, Rad54 is downstream of DSB resection. Rad54-mediated Rad51 accumulation does not require Rad54's ATPase activity. Thus, our experiments demonstrate that SWI/SNF proteins may have functions independent of their ATPase activity. However, quantitative real-time analysis of Rad54 focus formation indicates that Rad54's ATPase activity is required for the disassociation of Rad54 from DNA and Rad54 turnover at DSBs. Although the non-DNA-bound fraction of Rad54 reversibly interacts with a focus, independent of its ATPase status, the DNA-bound fraction is immobilized in the absence of ATP hydrolysis by Rad54. Finally, we show that ATP hydrolysis by Rad54 is required for the redistribution of DSB repair sites within the nucleus.


Assuntos
Trifosfato de Adenosina/fisiologia , DNA Helicases/fisiologia , Reparo do DNA , Genoma , Proteínas Nucleares/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , DNA Helicases/análise , DNA Helicases/genética , Proteínas de Fluorescência Verde/análise , Espaço Intranuclear/metabolismo , Espaço Intranuclear/ultraestrutura , Camundongos , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Rad51 Recombinase/análise , Rad51 Recombinase/metabolismo , Rad51 Recombinase/fisiologia , Recombinação Genética
9.
Science ; 330(6009): 1385-9, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21127252

RESUMO

Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They are very effective at identifying DNA repair pathways, highlighting new damage-dependent roles for the Slt2 kinase, Pph3 phosphatase, and histone variant Htz1. The data also reveal that protein complexes are generally stable in response to perturbation, but the functional relations between these complexes are substantially reorganized. Differential networks chart a new type of genetic landscape that is invaluable for mapping cellular responses to stimuli.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Epistasia Genética , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , DNA Fúngico/genética , Genes Fúngicos , Histonas/genética , Histonas/metabolismo , Metanossulfonato de Metila/farmacologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênicos/farmacologia , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
PLoS Genet ; 5(12): e1000782, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20041197

RESUMO

This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex.


Assuntos
Genoma Fúngico/genética , Estudo de Associação Genômica Ampla , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Análise por Conglomerados , Redes Reguladoras de Genes , Marcadores Genéticos , Ligação Proteica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...